p-Index From 2021 - 2026
13.746
P-Index
This Author published in this journals
All Journal JURNAL SISTEM INFORMASI BISNIS EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi CESS (Journal of Computer Engineering, System and Science) JURNAL PENGABDIAN KEPADA MASYARAKAT Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi Sinkron : Jurnal dan Penelitian Teknik Informatika JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING JURNAL MEDIA INFORMATIKA BUDIDARMA SMARTICS Journal Indonesian Journal of Artificial Intelligence and Data Mining IJIS - Indonesian Journal On Information System JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Teknik Informatika UNIKA Santo Thomas JurTI (JURNAL TEKNOLOGI INFORMASI) Jiko (Jurnal Informatika dan komputer) ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA JISTech (Journal of Islamic Science and Technology) JURNAL TEKNOLOGI DAN OPEN SOURCE Jurnal Teknologi Sistem Informasi dan Aplikasi IJISTECH (International Journal Of Information System & Technology) JOURNAL OF SCIENCE AND SOCIAL RESEARCH Simtek : Jurnal Sistem Informasi dan Teknik Komputer Jurnal Dedikasi Pendidikan EDUMATIC: Jurnal Pendidikan Informatika METIK JURNAL Jurnal Mantik Progresif: Jurnal Ilmiah Komputer Jurnal Ilmiah Sains dan Teknologi Zonasi: Jurnal Sistem Informasi Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Jatilima : Jurnal Multimedia Dan Teknologi Informasi Journal of Intelligent Decision Support System (IDSS) G-Tech : Jurnal Teknologi Terapan JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) INFOKUM Jurnal Sistem Komputer dan Informatika (JSON) TIN: TERAPAN INFORMATIKA NUSANTARA Brahmana : Jurnal Penerapan Kecerdasan Buatan Journal of Computer Science, Information Technology and Telecommunication Engineering (JCoSITTE) Journal of Computer Networks, Architecture and High Performance Computing IJISTECH Journal La Multiapp Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Instal : Jurnal Komputer Jurnal Info Sains : Informatika dan Sains Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Mandiri IT Jurnal Teknik Informatika Unika Santo Thomas (JTIUST) Jurnal Informatika Teknologi dan Sains (Jinteks) Jurnal Algoritma Edu Society: Jurnal Pendidikan, Ilmu Sosial dan Pengabdian Kepada Masyarakat SENTRI: Jurnal Riset Ilmiah Malcom: Indonesian Journal of Machine Learning and Computer Science STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer International Journal of Science and Environment SmartComp VISA: Journal of Vision and Ideas Da'watuna: Journal of Communication and Islamic Broadcasting Future Academia : The Journal of Multidisciplinary Research on Scientific and Advanced The Indonesian Journal of Computer Science Teknologi : Jurnal Ilmiah Sistem Informasi
Claim Missing Document
Check
Articles

Application of Canny Method to Detect Vehicle License Plate in Tanjung Balai City Government Mess Area Aini, Siti Nurul; Kurniawan, Rakhmat
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.32426

Abstract

Vehicles have a license plate that serves to be the identity of a vehicle. The shape of the plate is in the form of a piece of metal mounted on the vehicle as an official identity. Making a license plate or Motor Vehicle Number Sign in Indonesia is regulated in Government Regulation No. 60 of 2016 with a validity period of 5 years. The regulation is about the type and tariff of Non-Tax State Revenue (BNBP), and has been officially enacted on January 6, 2017, by replacing Government Regulation No.50 of 2010, quoted from the Kompas newspaper website. Image is one of the components of multimedia that plays an important role because it contains information in visual form. Images have more information that can be conveyed than in the form of text. An image is a collection of image elements (pixels) that as a whole record a scene through a visual sensory (camera). Canny edge detection can detect edges with a minimum error rate, canny edge detection has a difference with other operators because it uses a Gaussian Derivative Kernel that can refine the appearance of the image. Good location can minimize the distance of edge detection produced by processing, so that the location of the edge can be detected similar to the real edge. The accuracy value of applying this method reaches 99.88%-100%. And lastly, one response to single edge that can produce a single edge, not giving false edges.
Implementasi Algoritma A Star Pada Aplikasi Game Petualangan Maze Island Berbasis Android Kurniawan R, Rakhmat; Armansyah, Armansyah; Haliem, Alexander
Smart Comp :Jurnalnya Orang Pintar Komputer Vol 13, No 4 (2024): Smart Comp: Jurnalnya Orang Pintar Komputer
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/smartcomp.v13i4.6796

Abstract

Teknologi semakin berkembang dari waktu ke waktu seperti saat ini, khususnya perkembangan teknologi game. Pengembangkan teknologi dalam game agar game bisa menjadi seperti layaknya di dunia nyata. Untuk membuat game yang realistis tentunya mengimplementasikan artificial intelligence atau kecerdasan buatan Game merupakan salah satu hiburan Masyarakat saat ini , salah satunya adalah game labirin atau yang biasa disebut game maze. Dimana game maze atau labirin menggunakan cara manual untuk menyelesaikan permainan tersebut untuk mencari rute terdekat yang akan dituju, maka dari itu  algoritma a star diperlukan untuk mempermudah mencari rute tercepat dari labirin tersebut, algoritma a star merupakan salah satu metode pencarian jalur tercepat dimana penulis akan mensimulasikan algoritma a star tersebut untuk membuktikan bahwa algoritma a star bisa berjalan menentukan rute tercepat pencarian jalur terdekat untuk memudahkan pemain menuju target yang dituju. 
Implementasi Algoritma K-Means untuk Pengelompokan Data Penjualan Berdasarkan Pola Penjualan: Implementation of K-Means Algorithm for Clustering Sales Data Based on Sales Patterns Yahya, Arfigo; Kurniawan, Rakhmat
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1773

Abstract

Toko Sembako Aceh Mulia memiliki sebuah pusat distribusi. Pusat distribusi ini menyimpan banyak produk berbeda yang akan dijual, melihat pada pusat distribusi toko masih melibatkan pembukuan untuk berbagai informasi transaksi, dan masih mengkaji produk yang akan dibeli untuk memenuhi stok di pusat distribusi, masih belum ada estimasi untuk produk yang umumnya dicari oleh pelanggan, untuk menghasilkan perkembangan produk yang sedang populer dan meminimalisir produk tidak sering dibeli yang menyebabkan kerugian. Dalam permasalahan yang ada menggunakan metode K-means, dengan mengklaster atau mengelompokkan barang-barang yang terjual menjadi 3 bagian yaitu sangat laku, laku dan kurang laku, dengan pembagian seperti ini diharapkan memudahkan Toko Sembako Aceh Mulia dalam menyusun strategi dalam management penyetokan barang dengan pengelompokan barang yang terjual dengan kriteria sangat laku. Hasil clustering dari 30 dataset yang sudah di analisis menunjukan bahwa C1 terdapat 21 jenis produk dimana dapat dikategorikan paling laris dengan nilai 181,23 pada jenis produk kopi kapal api dan C2 terdapat 9 jenis produk dimana dapat dikategorikan paling tidak laris dengan nilai 228,03 pada jenis produk kopi kapal api.
Analysis Of Opinion Sentiment Towards Electric Vehicle Tax On Social Media X Using The Support Vector Machine (SVM) Method Jusli, Dara Taqa Assajidah; Kurniawan, Rakhmat
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 4 (2024): Articles Research October 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i4.4739

Abstract

Electric vehicle tax is increasingly becoming an important issue related to environmental and fiscal policies. Electric vehicles are considered an environmentally friendly solution to reduce greenhouse gas emissions and dependence on fossil fuels. However, public perception of electric vehicle tax is still mixed. This study aims to analyze public sentiment about electric vehicle tax based on data from social media platform X, using the Support Vector Machine (SVM) method. The data used was taken through a crawling technique with a total of 1,014 valid data. The data was then classified into positive and negative classes with a transformer. In this analysis, the data was divided with a ratio of 8:2 between training data and test data. 811 were used as training data and 203 as test data. The research stages involved data preprocessing, sentiment labeling, data separation into training and test data, and weighting using TF-IDF. After that, SVM was applied to classify tweets into positive and negative sentiments. The test results showed that the SVM algorithm had an accuracy of 79%, precision of 85%, recall of 89%, and F1-score of 87%. Based on the results of this study, some people feel unsure about the government's policy regarding electric vehicle tax, because it is considered unfair to the lower middle class. Electric vehicles are considered more expensive than fuel-powered vehicles, so this policy is considered unprofitable.
Measuring Water Content in Hydroponic Plants Based on PH Values and Nutriens Using Fuzzy Logic Microcontroller Based Tsukamoto Julianti, Miranda; Rakhmat Kurniawan R
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 4 (2024): Articles Research October 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i4.4764

Abstract

Hydroponic cultivation is a method of planting without soil by utilizing water containing nutrients and oxygen at certain levels. Regulation and monitoring of pH, nutrients (TDS), and water temperature are crucial factors in the success of a hydroponic system. Inaccuracies in nutrient water management can significantly affect plant growth. This study aims to design an automation system capable of monitoring pH and water nutrient levels using the Fuzzy Tsukamoto method based on the Nodemcu ESP32 microcontroller. The sensors used in this study are the MSP340 pH Module sensor to measure acidity (pH) and the Df Robot Module TDS sensor to detect nutrient levels in water. The Fuzzy Tsukamoto method is applied to make fuzzy logic-based decision-making, where the input values of pH and nutrients are converted into linguistic variables. The fuzzyfication process is carried out to determine the level of plant fertility, while the inference method is used to produce output based on previously set rules. This monitoring system also utilizes the Nutrient Film Technique (NFT) technique with a linear regression method to optimize the use of water pumps, making it more energy efficient. With the design of this system, hydroponic farmers can monitor water conditions automatically and in real-time, increasing efficiency and reducing human error in nutrient water management. The results of this study are expected to provide innovative solutions for the development of more efficient and sustainable hydroponic systems.
Analysis of Drug Sales Patterns in the Belawan Naval Hospital Pharmacy Using Apriori Algorithm Bahari, Mhd Raja Doly; Kurniawan, Rakhmat
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 4 (2024): Articles Research October 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i4.4805

Abstract

Hospital pharmacy plays an important role in ensuring drug availability and effective stock management. With the increasing number of drug redemptions, manual data management becomes inefficient and can lead to understocking or overstocking. Therefore, a method is needed that is able to automatically analyze drug sales patterns to improve stock management efficiency. One approach that can be used is the Apriori algorithm, an effective data mining technique for finding patterns in drug redemptions. This study aims to analyze drug redemption patterns at the Belawan Navy Hospital Pharmacy using the Apriori algorithm. The data used is drug redemption data. The Apriori algorithm is applied to find relationships between drug items that are often purchased together, so that it can provide useful insights in drug stock management. The results of the study showed that the Apriori algorithm successfully identified several significant drug redemption patterns. These patterns can be used to improve the efficiency of drug stock management and ensure timely drug availability, as well as reduce the risk of understocking or overstocking. The results of the study used logistic regression to predict discrete (binary) values from a column based on values from other columns and the accuracy obtained was 1.0 or 100%. This study concludes that the application of data mining with the Apriori algorithm can provide significant benefits in optimizing the management of drug stock redemption in hospital pharmacies.
Prediction of the Number of Patient Visits in a Psychiatric Hospital Prof. Dr. M. Ildrem Using Naive Bayesian Algorithm Syahputra, Zidhane; Kurniawan, Rakhmat
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5145

Abstract

This study was conducted to predict the number of patient visits at Prof. Dr. M. Ildrem Mental Hospital using the Naive Bayes algorithm, which is relevant given the increasing need for global mental health care. The main problem of this study is the difficulty in managing hospital resources efficiently due to unpredictable fluctuations in the number of patient visits. The research aims to apply the Naive Bayes algorithm to predict the number of patient visits and evaluate their performance. The method used is a naïve Bayes algorithm with systematic steps including historical data collection, data preprocessing using LabelEncoder, and dividing the dataset into training data and test data (80:20) where the training data totals 1331 data and the test data has 333 data. The Naive Bayes model is built and tested with metrics such as accuracy, precision, recall, and F1-score. The results of the study based on confusion matrix analysis, the model achieved an accuracy of 0.8108108108108109 or 81%, a precision of 0.8206686930091185 or 82.07%, a recall value of 0.9926470588235294 or 99.26%, and an F1-score of 0.90 or 90%, which shows that this model is quite effective in predicting service units with the dominance of adolescent category patient data where it is concluded that this prediction model is able to provide accurate estimates of patient visits,  supporting the management of hospital resources, and improving the operational efficiency of mental health services. This research is expected to help hospitals in planning facilities and workforce more effectively.
Analisis Sentimen Cyberbullying Pada Media Sosial X Menggunakan Metode Support Vector Machine Syahira, Melani Alka; Kurniawan, Rakhmat
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7926

Abstract

Twitter or the platform now known as social media X is now one of the social networks most popular. Its popularity not only does it have a positive impact but it also has a negative impact on both users and non-users of the X platform. The negative impact is a lot many social media users use it to insult or defame, known as Cyberbullying. Cyberbullying is a deliberate act and occurs virtually through verbal intimidation or ongoing harassment on the internet or social media. Cyberbullying can cause serious emotional impacts for the victim, such as depression, behavior changes, mood swings, and sleep and appetite disorders. To overcome this problem, sentiment analysis using data from X to determine the level of accuracy with the Support Vector Machine algorithm. Data was collected through Crawling as many as 1000 data, then Preprocessing was carried out. After preprocessing, data labeling was carried out manually, there were 157 positive data and 843 negative data. Then, the data was separated into two parts, namely 80% training data and 20% testing data. The results of data processing showed 87% accuracy, 88% precision, 99% recall, and 93% f1-score.
Penerapan Text Mining Pada Sistem Rekomendasi Pembimbing Skripsi Mahasiswa Menggunakan Algoritma Naive Bayes Classifier di Program Studi Ilmu Komputer UIN Sumatera Utara Medan Kurniawan. R, Rakhmat; Ikhsan, Muhammad
The Indonesian Journal of Computer Science Vol. 12 No. 6 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i6.3500

Abstract

Penunjukan dosen pembimbing skripsi oleh program studi akan disesuaikan dengan rumpun keilmuan dosen dengan topik dari judul proposal skripsi mahasiswa. Selain rumpun keilmuan, program studi juga harus berusaha mendistribusikan dosen pembimbing secara proporsional, sehingga potensi terjadinya kelebihan beban kerja pada dosen pembimbing dapat dihindari. Hal ini berlaku untuk dosen pembimbing I dan dosen pembimbing II. Selanjutnya dirasa perlu melakukan penelitian untuk mengatasi masalah tersebut. Dengan harapan memudahkan pengelola program studi dalam menentukan Pembimbing Skripsi yang sesuai antara topik dengan keilmuan dosen. Selanjutnya mempercepat proses penentuan judul skripsi mahasiswa dan tentunya juga akan mempercepat proses penyelesaian studi mahasiswa strata 1. Maka dirancanglah sebuah sistem yang mampu merekomendasi dosen pembimbing yang sesuai dengan topik skripsi yang diajukan melalui teknologi text mining menggunakan algoritma NBC. Algoritma NBC mampu untuk mendeteksi topik yang ada pada suatu koleksi dokumen beserta besarnya kemunculan topik tersebut.
Web-Based Monitoring Information System for Official Travel Letters on Food Security and North Sumatera Horticulture Rafli Bima Sakti; Rakhmat Kurniawan
Indonesian Journal of Data Science, IoT, Machine Learning and Informatics Vol 5 No 1 (2025): February
Publisher : Research Group of Data Engineering, Faculty of Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/dinda.v5i1.1789

Abstract

The Food Security and Horticulture Office of North Sumatra faces challenges in the management of Service Travel Letters (SPD), such as submitting letters, making letter notes, operational costs, which are still done manually using manual methods, so it is time consuming. This hampers the effectiveness of document management and data-based decision making. To overcome these problems, this research develops a web-based monitoring information system. This system is designed to manage official travel letters, to minimize the time and recording of letter reports. With the web-based Monitoring Information System, the management of official travel letters becomes more structured and can be accessed in real-time, thus increasing efficiency in carrying out official duties in various regions of North Sumatra. This research uses the Research and Development (R&D) method with stages including needs analysis, system design, prototype development, testing, and evaluation. The results of the system implementation show that the use of this Monitoring Information System is able to speed up the process of submitting and approving official travel letters, as well as reducing errors in data collection and recording of trips.
Co-Authors Abdul Halim Hasugian Agung Firmansyah Ahmad Fauzi Ahmad Taufik Al Afkari Siahaan Aidil Halim Aidil Halim Lubis Aidil Halim Lubis Aidil Halim Lubis Alhafiz, Akhyar Alwy Azyari Harahap Amelia, Dara Andre Gusli Agus Riadi Armansyah Armansyah Armansyah Armansyah Arrafiq, Muhammad Sunni Asnawi, Azi Ayyina, Ayyina Nurhidayah Azhari, Fajar Bahari, Mhd Raja Doly Bayhaqi, Abdullah Bisri, Cholil Br Rambe, Indri Gusmita Dandi, Muhammad Khairil Dasopang, Buyung Satrio Dwisyahputra, Achmad Adbillah Eva Darwisah Harahap Fadiga, Muhammad Fahrul Afandi Fakhriyah, Mardhiyah Fakhrizal, Fiqri Fatwa, Nursalimah Isnaina Fikri Aulia Habibie, Alief Fathul Haliem, Alexander Hanafi, Muhammad Rizky Harahap, Nita Maharani Harahap, Rina Syafiddini Harahap, Shopiah Henni Melisa Hidayat, Zulfy Hidayatullah, Catur HP, Kiki Iranda Hsb, Khoiri Sutan Ibsan, Muhammad Hanafi Ilham Rizki Ananda Ilka Zufria Imam Zaki Husein Nst Ivan Prayuda Julianti, Miranda Jusli, Dara Taqa Assajidah Kesuma Dwi Ningtyas Khairin Nadia Khairunissabina, Khairunissabina Khoiriah, Miftahul Lubis, Fahrian Zibran Lubis, Farhan Rusdy Asyhary M. Teguh wijaya Masdaliva, Fita Maulana, Fahmi Meilina, Indah Mey Hendra Putra Sirait Mhd Furqan Mhd Furqan Mhd. Furqan Furqan Mhd.Furqan Muhammad Abi Muzaki Muhammad Fahri, Muhammad Muhammad Ikhsan Muhammad Siddik Hasibuan Nasution, Fitri Handayani Nasution, Raihan Hafiz Noor Azizah Novita Jambak, Indah Nur Aini, Sakina Nurjanah, Trya Nurwana Nazla Saragih Padang, Bermiko Kasah Pravda, Michellia Delphi Isfahan Prayoga, Dio Putri Hanifah Putri, Raissa Ramanda Qasthari, Mohd. Wildan Rafli Bima Sakti Ramadhan, Alfan Ramadhan, Nuzul Ramadhan, Rio Fadli Ramadhan, Rizky Syahrul Ratna Dewi, Sri Reza Muhammad Rifansyah, Mhd. Roji Rifqi Alwanu Akmal Rina Filia Sari Rini Halila Nasution Rizki Ananda Putra Fajar Rizky Pratama Putra Rudi Riyandi Salsabillah, Ayna Sandira, Sri Delwis Saragih, Khoirul Azmi Saragih, Rafif Aprizki Sari, Desliana Sihombing, Rizki Andika Silva Ukhti Filla Silvi Joya Arditna Br Bukit Sinaga, Imam Adlin Sinaga, Muhammad Nabil Siregar, Muharram Soleh Siti Afifah Siregar Siti Ayu Hadisa Siti Nurul Aini, Siti Nurul Siti Sarah Harahap Siti Sumita Harahap Sri Marwah Badrin Sriani Sriani Sriani Sriani, S Stephani Silalahi Suhardi Suhardi Suhardi Suhardi, Suhardi Syahira, Melani Alka Syahputra, Pii Syahputra, Zidhane Syarifudin, Zaini Tbn, Ahmad Fauza Anshori Triase Triase Triase Triase, Triase Wahyu Kurniawan wijaya, M. Teguh Wini Istya Sari Lubis Yahya, Arfigo YENI SAFITRI Yudha, Muhammad Yudha Pratama Zahron, Almeranda Haryaveda Nurul