Padi merupakan bahan pangan yang sangat penting untuk menunjang kebutuhan pangan di Indonesia, khususnya di Pulau Sumatera. Faktor-faktor yang memengaruhi produksi padi meliputi luas panen, kelembapan, curah hujan, dan suhu rata-rata. Setiap tahun, suhu bumi yang terus meningkat akibat pemanasan global berdampak pada iklim yang fluktuatif, sehingga dapat menghambat produksi padi. Memahami faktor-faktor tersebut menjadi penting untuk pengembangan strategi yang efektif dalam meningkatkan produktivitas padi. Penelitian ini menggunakan bahasa pemrograman Python pada Google Colab untuk membandingkan metode regresi linear berganda dan K-Nearest Neighbors (KNN) dalam memprediksi produksi padi di Pulau Sumatera. Hasil penelitian menunjukkan bahwa metode regresi linear lebih akurat dibandingkan KNN, dengan nilai R² regresi linear sebesar 0,868181, lebih unggul 18,94% dibanding KNN. Selain itu, regresi linear memiliki nilai MAE yang lebih rendah sebesar 22,03% dan nilai MSE yang lebih rendah sebesar 55,49% dibanding KNN. Hasil ini menunjukkan bahwa regresi linear lebih andal dalam memprediksi produksi padi di Pulau Sumatera dan dapat digunakan sebagai alat bantu dalam pengambilan keputusan strategis di sektor pertanian.