p-Index From 2021 - 2026
6.965
P-Index
This Author published in this journals
All Journal International Journal of Evaluation and Research in Education (IJERE) ComEngApp : Computer Engineering and Applications Journal Indonesian Journal of Electronics and Instrumentation Systems IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Ilmu Komputer dan Informasi Jurnal Ilmiah Informatika Komputer Jurnal Simetris Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Intiqad: Jurnal Agama dan Pendidikan Islam Telematika : Jurnal Informatika dan Teknologi Informasi Scientific Journal of Informatics CESS (Journal of Computer Engineering, System and Science) Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Fourier InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Proceeding of the Electrical Engineering Computer Science and Informatics JPSE (Journal of Physical Science and Engineering) Jurnal Teknologi dan Sistem Komputer Jurnal Informatika INTEGER: Journal of Information Technology Jurnal Matematika: MANTIK JURNAL MEDIA INFORMATIKA BUDIDARMA BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING JTAM (Jurnal Teori dan Aplikasi Matematika) Jurnal Informatika Universitas Pamulang JUMANJI (Jurnal Masyarakat Informatika Unjani) Jurnal Telematika Mathvision : Jurnal Matematika Building of Informatics, Technology and Science Transformasi : Jurnal Pendidikan Matematika dan Matematika Jurnal Mnemonic Majalah Ilmiah Matematika dan Statistika (MIMS) Dinamika Informatika: Jurnal Ilmiah Teknologi Informasi JUSTIN (Jurnal Sistem dan Teknologi Informasi) Serambi Engineering
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : ComEngApp : Computer Engineering and Applications Journal

Identification of Stunting Disease using Anthropometry Data and Long Short-Term Memory (LSTM) Model Faris Mushlihul Amin; Dian Candra Rini Novitasari
Computer Engineering and Applications Journal Vol 11 No 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.576 KB) | DOI: 10.18495/comengapp.v11i1.395

Abstract

Children with unbalanced nutrition are currently crucial health issues and under the spotlight around the world. One of the terms for malnourished children is stunting. Stunting is a disease of malnutrition found in children aged under 5 years; as many as 70% of stunting sufferers are children aged 0-23 months. There are several ways to diagnose stunting, one of which is using stunting anthropometry. Stunting anthropometry can measure the physique of children so that some of the features that characterize the presence of stunting can be identified. Features resulted from the stunting anthropometry cover age, height, weight, gender, upper arm circumference, head size, chest circumference, and hip fat measurement. The process of identifying stunting can be simplified using an intelligent system called the Computer-Aided Diagnosis (CAD) system. CAD system contains 2 main processes, namely preprocessing and classification. Preprocessing includes normalization and augmentation of data using the SMOTE method. The classification process in this study uses the LSTM method. LSTM is a modification of the Recurrent Neural Network (RNN) method by adding a memory cell so that it can store memory data for a long time and in large quantities. The results of this study compare between the results of models that apply preprocessing and the one without preprocessing. The model that only uses LSTM has the best accuracy of 78.35%; the model with normalization produces an accuracy of 81.53%; the model that uses SMOTE produces an accuracy of 81.66%; and the model that uses normalization and SMOTE produces the best accuracy of 85.79%.
Identification of Stunting Disease using Anthropometry Data and Long Short-Term Memory (LSTM) Model Amin, Faris Mushlihul; Novitasari, Dian Candra Rini
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Children with unbalanced nutrition are currently crucial health issues and under the spotlight around the world. One of the terms for malnourished children is stunting. Stunting is a disease of malnutrition found in children aged under 5 years; as many as 70% of stunting sufferers are children aged 0-23 months. There are several ways to diagnose stunting, one of which is using stunting anthropometry. Stunting anthropometry can measure the physique of children so that some of the features that characterize the presence of stunting can be identified. Features resulted from the stunting anthropometry cover age, height, weight, gender, upper arm circumference, head size, chest circumference, and hip fat measurement. The process of identifying stunting can be simplified using an intelligent system called the Computer-Aided Diagnosis (CAD) system. CAD system contains 2 main processes, namely preprocessing and classification. Preprocessing includes normalization and augmentation of data using the SMOTE method. The classification process in this study uses the LSTM method. LSTM is a modification of the Recurrent Neural Network (RNN) method by adding a memory cell so that it can store memory data for a long time and in large quantities. The results of this study compare between the results of models that apply preprocessing and the one without preprocessing. The model that only uses LSTM has the best accuracy of 78.35%; the model with normalization produces an accuracy of 81.53%; the model that uses SMOTE produces an accuracy of 81.66%; and the model that uses normalization and SMOTE produces the best accuracy of 85.79%.
Leukaemia Identification based on Texture Analysis of Microscopic Peripheral Blood Images using Feed-Forward Neural Network Puspitasari, Wahyu Tri; Haq, Dina Zatusiva; Novitasari, Dian Candra Rini
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 3 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Leukaemia is very dangerous because it includes liquid tumour that it cannot be seen physically and is difficult to detect. Alternative detection of Leukaemia using microscopy can be processed using a computing system. Leukemia disease can be detected by microscopic examination. Microscopic test results can be processed using machine learning for classification systems. The classification system can be obtained using Feed-Forward Neural Network. Extreme Learning Machine (ELM) is a neural network that has a feedforward structure with a single hidden layer. ELM chooses the input weight and hidden neuron bias at random to minimize training time based on the Moore Penrose Pseudoinverse theory. The classification of Leukaemia is based on microscopic peripheral blood images using ELM. The classification stages consist of pre-processing, feature extraction using GLRLM, and classification using ELM. This system is used to classify Leukaemia into three classes, that is acute lymphoblastic Leukaemia, chronic lymphoblastic Leukaemia, and not Leukaemia. The best results were obtained in ten hidden nodes with an accuracy of 100%, a precision of 100%, a withdrawal of 100%.
Co-Authors Abdulloh Hamid Abdulloh Hamid Achmad Teguh Wibowo Adam Fahmi Khariri Adyanti, Deasy Ahmad Hanif Asyhar Ahmad Hidayatullah Ahmad Zoebad Foeady Ahmad Zoebad Foeady Aisyah, Nora Alvin Nuralif Ramadanti Amin, Faris Mushlihul Arifin, Ahmad Zaenal Aris Fanani Ariyanto Wijaya, Indra Ariyanto, Dimas Azmi, Tasya Auliya Ulul Chalawatul Ais Damayanti, Adelia Deasy Adyanti Dianita Utami, Wika Dilla Dwi Kartika Diva Ayu Safitri Nur Maghfiroh Elen Riswana Safila Putri Fahriza Novianti Fajar Setiawan Fajar Setiawan Fajar Setiawan FAJAR SETIAWAN Fajar Setiawan Fanani, Aris Farida, Yuniar Faris Mushlihul Amin Farmita, Mayandah Ferryan, Dhandy Ahmad Firmansjah, Muhammad Fitria, Nur Annisa Foeady, Ahmad Zoebad Galuh Andriani Ganeshar B.D. Prasanda Gita Purnamasari R Hani Khaulasari Hanimatim Mu'jizah Haq, Dina Zatusiva Ifadah, Corii Indriyani, Jiphie Gilia Irkhana Indaka Zulfa Jauharotul Inayah Kurniawan, Mohammad Lail Kusaeri Kusaeri Lubab, Ahmad Luluk Mahfiroh Lutfi Hakim Lutfi Hakim Lutfi Hakim Luthfi Hakim Luthfi Hakim M. Hasan Bisri Mardiyah, Ilmiatul Masruroh Kusman, Umi Maulana, Achmad Resnu Maulana, Jeneiro Moh. Hafiyusholeh Mohammad Rizal Abidin Mohd Fauzi, Shukor Sanim Monika Refiana Nurfadila Muhammad Fahrur Rozi MUHAMMAD FAHRUR ROZI Muhammad Syaifulloh Fattah Muhammad Thohir Musfiroh Musfiroh, Musfiroh Nanang Widodo Nanang Widodo Nanang Widodo Nanang Widodo Nisa Trianifa Noviati Maharani Sunariadi Noviati Maharani Sunariadi Nur Afifah Nur Hidayah Nurissaidah Ulinnuha Pramesti, Diah Devi Puspitasari, Wahyu Tri Putri Wulandari Putri, Evi Septya Putroue Keumala Intan Rafika Veriani Ramadanti, Alvin Nuralif Ratnasari, Cristanti Dwi Rifa Atul Hasanah RIFA ATUL HASANAH Rozi, Muhammad Fahrur Rozzy, Fahrul Safira, Icha Dwi Sani, Puteri Permata Sari, Firda Yunita Sari, Ghaluh Indah Permata Sari, Yana Vita Setiawan, Fajar Setyawati, Maunah Siti Nur Aisah Siti Nur Fadilah Siti Nur Fadilah Siti Ria Riqmawatin Sukarni, Adinda Ika Sulistiya Nengse Sulistiyawati, Dewi Suwanto Suwanto Suwanto Suwanto Swindiarto, Victory T. Pambudi Tasya Auliya Ulul Azmi Unix Izyah Arfianti USWATUN KHASANAH Utami, Tri Mar'ati Nur Utami, Wika Dianita Utami Dianita Veriani, Rafika Vina Fitriyana Wanda N.P. Sunaryo Wijaya, Indra Ariyanto Wika Dianita Utami Wika Dianita Utami Wika Dianita Utami Wika Dianita Utami Wisnawa, Gede Gangga Yasirah Rezqita Aisyah Yasmin Yuliati, Dian Yuliawanti, Felia Dria Yuni Hariningsih Yuniar Farida, Yuniar Yusuf, Ahmad Yuyun Monita Yuyun Monita Zahroh, Khofifah Auliyatuz Zulfa, Elok Indana