Claim Missing Document
Check
Articles

Network Intrusion Detection Using Transformer Models and Natural Language Processing for Enhanced Web Application Attack Detection Priatna, Wowon; Sembiring, Irwan; Setiawan, Adi; Setyawan, Iwan
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI Vol. 13 No. 3 (2024)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v13i3.82462

Abstract

The increasing frequency and complexity of web application attacks necessitate more advanced detection methods. This research explores integrating Transformer models and Natural Language Processing (NLP) techniques to enhance network intrusion detection systems (NIDS). Traditional NIDS often rely on predefined signatures and rules, limiting their effectiveness against new attacks. By leveraging the Transformer's ability to capture long-term dependencies and the contextual richness of NLP, this study aims to develop a more adaptive and intelligent intrusion detection framework. Utilizing the CSIC 2010 dataset, comprehensive preprocessing steps such as tokenization, stemming, lemmatization, and normalization were applied. Techniques like Word2Vec, BERT, and TF-IDF were used for text representation, followed by the application of the Transformer architecture. Performance evaluation using accuracy, precision, recall, F1 score, and AUC demonstrated the superiority of the Transformer-NLP model over traditional machine learning methods. Statistical validation through Friedman and T-tests confirmed the model's robustness and practical significance. Despite promising results, limitations include the dataset's scope, computational complexity, and the need for further research to generalize the model to other types of network attacks. This study indicates significant improvements in detecting complex web application attacks, reducing false positives, and enhancing overall security, making it a viable solution for addressing increasingly sophisticated cybersecurity threats
Implementasi Fuzzy Logic Pada Sistem Kontrol pH Air Mineral Berbasis IOT Joniwarta; Priatna, Wowon; Hamdani, Asep R.; Alexander, Allan D.
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3356

Abstract

Implementation of Fuzzy Logic in the IOT-Based Mineral Water pH Control System for various existing bottled mineral water products, this system can measure the pH value, to find out if the value is still within the limits suitable for consumption or not based on government regulations. The public finds it challenging to understand the level of the pH value of the product because the current state of information regarding the pH level of mineral water generally is not listed in the mineral water bottle circulating on the market. Hardware design, application design, and hardware and software integration were the three steps of this research project. The pH value will be read by this control system from the output of the sensors then the data is collected into a data set. The data will be examined for trends using fuzzy logic, which will be used to classify the maximum and minimum pH levels, acidity levels, and base levels. The study's findings show that an internet-based web of things can access the mineral water pH control system to ascertain each mineral water product's pH value and temperature. This information can then be used by consumers to ascertain the pH level of each mineral water product.
Particle Swarm Optimization Untuk Optimasi Klasifikasi Tingkat Kepuasan Layanan Publik Priatna, wowon
The Indonesian Journal of Computer Science Vol. 12 No. 5 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i5.3441

Abstract

Tujuan dari penelitian ini adalah untuk mengetahui tingkat kepuasan terhadap pelayanan yang diberikan oleh pemerintah daerah sebagai penyedia layanan publik dengan mengklasifikasikan data yang diperoleh dari survei yang dilakukan. Saat ini desa dan kelurahan telah memberikan pelayanan sesuai kebutuhan masyarakat, namun jika tidak sepenuhnya memberikan pelayanan yang optimal maka dapat menimbulkan ketidakpuasan dan merugikan masyarakat baik secara fisik maupun materil. Untuk meningkatkan kualitas layanan dan menyelesaikan keluhan pengguna layanan secara efektif, mengidentifikasi pola dan memberikan umpan balik yang tepat waktu untuk meningkatkan produk dan layanan yang diberikan, diperlukan metode klasifikasi pengguna layanan. Metode pengumpulan data pada penelitian ini menggunakan metode survei dengan menyebarkan kuesioner kepada masyarakat pengguna layanan publik di desa dan kelurahan. Data yang diperoleh dianalisis menggunakan Excel untuk mengolah data terlebih dahulu untuk membuat model klasifikasi. Pada tahap prepROCessing, data dikelompokkan untuk mendapatkan label/target sehingga data tersebut dapat diolah menggunakan algoritma klasifikasi. Klasifikasinya menggunakan algoritma Decision Tree (DT), Naïve Bayes, Support Vector Machine (SVM), K-Nearest Neighbor (KNN). Tingkatkan klasifikasi dengan pengoptimalan fitur menggunakan Particle Pool Optimization (SPO). Penelitian ini menghasilkan nilai akurasi tertinggi pada klasifikasi pohon keputusan dengan mendapatkan nilai akurasi tertinggi sebesar 97,74%, disusul algoritma KKN memperoleh akurasi sebesar 77,90%, algoritma Naïve Bayes sebesar 64,4% dan algoritma yang memperoleh nilai akurasi terkecil adalah algoritma SVM. yaitu 59,90%. Setelah dilakukan optimasi, nilai akurasi tertinggi terdapat pada algoritma SVM dan algoritma KNN sebesar 98,3%, pohon keputusan sebesar 97,77%, dan akurasi terkecil pada algoritma Naïve Bayes sebesar 69,30%.
Dampak Pengambilan Sampel Data untuk Optimalisasi Data tidak seimbang pada Klasifikasi Penipuan Transaksi E-Commerce Priatna, Wowon
The Indonesian Journal of Computer Science Vol. 13 No. 2 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i2.3698

Abstract

Tujuan dari penelitian ini adalah untuk mengatasi masalah pengklasifikasian dan prediksi data yang tidak seimbang terkait dengan kondisi transaksi E-Commerce. Menjamurnya transaksi e-commerce menimbulkan potensi permasalahan: penipuan dalam pembelian e-commerce. Kasus penipuan e-niaga terus meningkat setiap tahun sejak tahun 1993. Menurut survei tahun 2013, untuk setiap $100 transaksi e-niaga, terdapat kerugian sebesar 5,65 sen akibat penipuan. Mendeteksi penipuan merupakan pendekatan yang efektif untuk meminimalkan terjadinya aktivitas penipuan dalam transaksi e-commerce. Pembelajaran menjadi metode yang semakin dapat diandalkan untuk memprediksi keadaan. Tidak adanya keseimbangan antara data yang curang dan tidak curang mengakibatkan klasifikasi menjadi bias. Algoritma SMOTE diperlukan untuk mencapai keseimbangan data. Selanjutnya peristiwa transaksi akan diklasifikasikan menggunakan algoritma Support Vector Machine, K-Nearest Neighbor, Naive Bayes, dan C45, dengan mempertimbangkan hasil penyeimbangan data. Di antara algoritma SVM, KNN, dan C45, metode Naive Bayes menunjukkan nilai akurasi tertinggi. Oleh karena itu, disarankan untuk menggunakan teknik ini untuk tujuan mengidentifikasi kondisi e-commerce
Crawling Engine Pada Website Mann, Baldwin, Fleetguard Dan Pengelompokan Produk Menggunakan K-Means Rahman, Andi; Priatna, Wowon; Lestari, Tyastuti Sri; Hidayat, Agus
Jurnal Pelita Teknologi Vol 19 No 2 (2024): September 2024
Publisher : Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tujuan penelitian ini adalah untuk mengelompokan produk pada beberapa web site. Dalam crawling engine akan sangat membantu dalam memasukan data produk secara otomatis mengambil data dari website produk tersebut, kemudian di input dalam aplikasi Odoo. Algoritma k-means klustering sendiri adalah algoritma mengelompokkan pengamatan ke dalam kelompok k, di mana k merupakan parameter input. Tiap data kemudian ditetapkan pada setiap pengamatan cluster berdasarkan kedekatan pengamatan nilai rata-rata cluster. Pengelompokan ini akan sangat membantu dalam klasifikasi produk berdasarkan cross reference. Hasil dari penelitian ini adalah produk produk terinput secara otomatis dan data sesuai dengan website produk tersebut dan produk terkelompok sesuai dengan cross reference.
Implementasi Algoritma Naïve Bayes dan Algoritma C4.5 Untuk Melakukan Analisis Sentimen terhadap Ulasan Komentar Pengguna TikTok di Google Play Store Aprilyana, Dhea Putri; Priatna, Wowon; Setiawati, Siti
Jurnal Pelita Teknologi Vol 19 No 1 (2024): Maret 2024
Publisher : Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/pelitatekno.v19i1.2488

Abstract

TikTok is a popular application among young people. TikTok was an application initially launched in China before landing in Indonesia at the end of 2017. Unfortunately, the popularity of TikTok stems from personal lack of self-image, for example wearing sexy clothes, dancing in erotic and inappropriate moves. This is based on many positive and negative comments from TikTok users. So we need a way to automatically classify reviews through sentiment analysis. The purpose of this study is to classify TikTok user comments on Google Play Store using Naive Bayes and C4.5 algorithms. This study used 1330 data, of which 602 data were negative and 728 data were positive. The results show that the Naive Bayes algorithm produces accuracy values ​​of 79.00%, 79.00% precision, 78.00% recall, and 78.00% F1 score. The C4.5 algorithm produces 68.00% accuracy, 68.00% precision, 68.00% recall, and 68.00% F1 score. We can conclude that the Naive Bayes algorithm is the best algorithm compared to the C4.5 algorithm. The Naive Bayes algorithm achieves an accuracy value of 79.00%.
Algoritma First in First Out (FIFO) Untuk Perancangan Aplikasi Pemesanan Kaos Sablon Widianto, Ilham Rizky; Priatna, Wowon; Lubis, Hendarman
Jurnal Kajian Ilmiah Vol. 23 No. 2 (2023): May 2023
Publisher : Lembaga Penelitian, Pengabdian Kepada Masyarakat dan Publikasi (LPPMP)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/tva3pd96

Abstract

The purpose of this study is to solve the problem of screen-printing T-shirt shops. For manual screen printing t-shirt shops, customers often have to visit the store in person or contact them via chat or phone, often encountering the following issues when ordering t-shirts: B. Irregular orders for those who have placed an order in advance or who have been waiting for a long time. One way to solve the queuing problem is the FIFO algorithm. FIFO algorithms are methods for organizing, processing, and manipulating basic data structures in computer systems. The FIFO algorithm phases in this study begin with the data preparation phase, the Gantt cart process, and finally his FIFO wait time. The result of the FIFO stage translates into creating applications using the Java programming language, Android Studio, and the FireBase database. The results of this study can be applied to his FIFO algorithm for customer queues in ordering T-shirts. A t-shirt ordering application was tested using the white box method by running the test case in four passes. All tests passed, so you can use the ordering application based on the FIFO algorithm.
Perancangan Sistem Registrasi Pelayanan Pernikahan Pada KUA Pasar Minggu Jakarta Wowon Priatna; Siti Setiawati, Andika Yusuf Hidayat
Journal of Informatic and Information Security Vol. 1 No. 2 (2020): Desember 2020
Publisher : Program Studi Informatika, Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jiforty.v1i2.156

Abstract

The Office of Religious Affairs (KUA) is one of the work units of the Ministry of Religion which is tasked with fostering and providing services to the community at the sub-district level. The Pasar Minggu Subdistrict Religious Affairs Office as the government agency coordinates activities and carries out internal and cross-internal activities in the sub-district area. To that end, the Office of Religious Affairs carries out documentation of marriage statistics, builds mosques in its territory, monitors zakat, waqf, baitul maal and other social services, monitors population and develops sakinah family programs. In carrying out the registration of marriage, the KUA of Pasar Minggu Subdistrict still has shortcomings in the system for recording marriages that are carried out. The drawbacks include the manual marriage registration process, making it less effective and inefficient. The manual recording is still making marriage reports which are still recorded in the ledger, so if you want to find data, the staff will manually look for the report data. Seeing this obstacle, the authors have the idea to create a system that can process data easier and simple in use so as to save time and streamline the work of KUA staff. In this study, the authors used several stages of work, starting from the process of analysis, planning, design using the PHP programming language and MySQL database, to the implementation stage with an object-oriented approach using UML (Unified Modeling Language). The results obtained from a system that the author created can help KUA staff in inventorying marriage data, helping them also in making systemized marriage reports and in finding registrants and marriage reports to be given to the Head of the Office of Religious Affairs (KUA).
Optimizing Multilayer Perceptron with Cost-Sensitive Learning for Addressing Class Imbalance in Credit Card Fraud Detection Priatna, Wowon; Hindriyanto Dwi Purnomo; Ade Iriani; Irwan Sembiring; Theophilus Wellem
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5917

Abstract

The increasing use of credit cards in global financial transactions offers significant convenience for consumers and businesses. However, credit card fraud remains a major challenge due to its potential to cause substantial financial losses. Detecting credit card fraud is a top priority, but the primary challenge lies in class imbalance, where fraudulent transactions are significantly fewer than non-fraudulent ones. This imbalance often leads to machine learning algorithms overlooking fraudulent transactions, resulting in suboptimal performance. This study aims to enhance the performance of Multilayer Perceptron (MLP) in addressing class imbalance by employing cost-sensitive learning strategies. The research utilizes a credit card transaction dataset obtained from Kaggle, with additional validation using an e-commerce transaction dataset to strengthen the robustness of the findings. The dataset undergoes preprocessing with RUS and SMOTE techniques to balance the data before comparing the performance of baseline MLP models to those optimized with cost-sensitive learning. Evaluation metrics such as accuracy, recall, F1 score, and AUC indicate that the optimized MLP model significantly outperforms the baseline, achieving an AUC of 0.99 and a recall of 0.6. The model's superior performance is further validated through statistical tests, including Friedman and T-tests. These results underscore the practical implications of implementing cost-sensitive learning in MLPs, highlighting its potential to significantly enhance fraud detection accuracy and offer substantial benefits to financial institutions.
The Effects of Data Sampling and Feature Selection on Public Service Satisfaction Using an Ensemble Classifier Algorithm Priatna, Wowon
The Indonesian Journal of Computer Science Vol. 14 No. 3 (2025): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i3.4533

Abstract

Customer satisfaction is an important factor that determines quality. User satisfaction analysis can identify the service quality and measure quality through an evaluation process to improve services. This research aims to measure the performance of services provided by the village government. Villages and sub-districts offer services based on the community's specific needs. Nevertheless, by delivering impeccable service, it is possible to satisfy the community without causing physical or material harm. An essential requirement is the development of a service user classification methodology to enhance service quality, efficiently address service user grievances, detect recurring trends, and promptly offer feedback to enhance the offerings of products and services. Machine learning approaches can be used to quantify public service satisfaction in the analytical process. Machine learning is an algorithmic approach used to assess and prioritize satisfaction with public services offered by service providers. The main approach for machine learning is an ensemble classifier. The data was analyzed using Excel; then, the data was processed first to create a classification model. At the preprocessing stage, the data is grouped to obtain labels/targets to be processed based on algorithmic classification. The classification uses the Classifier aggregation algorithm. Type improvements using optimization features using the Particle Swarm Optimization (PSO) sampling algorithm and random subsampling techniques. This research produced an accuracy value before adding sampling techniques and a PSO accuracy value of 92.68. After adding sampling techniques and PSO optimization, an accuracy value of 100% was obtained
Co-Authors -, Rasim ., Rasim Ade Iriani Adi Setiawan Agung Nugroho Agung Nugroho Agus Hidayat Agus Hidayat Aida Fitriyani, Aida Ajif Yunizar Pratama Yusuf Alexander, Allan D Alhillah, Yumaris Alfi Andi Lawrence Hutahaean, Johanes Andi Rahman Andri Fajriya Annisa Oktavianti Hermadi Aprilyana, Dhea Putri Asep R. Hamdani Asep Ramdhani M Asep Ramdhani Mahbub Atika , Prima Dina Danny Manongga Dimas Abimanyu Prasetyo Dwi Budi Srisulistiowati Dwipa Handayani Eka Nur A’ini Endang Retnoningsih Enggar Putera, dkk, Diaz Evi Maria Fadjriya, Andry Faisal Adi Saputra Fajar Mukharom Fathurrazi, Ahmad Febry Sandrian Sagala Fefbiansyah Hasibuan Galih Apriansha Pradana Hadi Kusmara Hamdani, Asep R. Hendarman Lubis Herlawati Herlawati Hindriyanto Dwi Purnomo Ikhsan Romli Ilham Rizky Widianto Irwan Sembiring Ismaniah, Ismaniah Iwan Setyawan Joni Warta Joni Warta Joniwarta Joniwarta Jumi Saroh Hidayat Kapriadi, Engkap Karyaningsih, Dentik Khoirunnisaa, Nabiilah Kustanto , Prio Lestari, Tyastuti Sri Lubis, Hendarman M. Fadhli Nursal Mahbub, Asep Ramdhani Mayadi Mayadi Mayadi, Mayadi Meutia, Kardinah Indrianna Mugiarso Mugiarso, Mugiarso Muhammad Khaerudin Noe’man,, Achmad Nurjeli Nurjeli Pradana , Galih Apriansha Prima Dina Atika Purnomo , Rakhmat Purnomo, Rakhmat Purnomo, Rakhmat Putra , Tri Dharma Rahmadya Trias Handayanto Rakhmat Purnomo Rasim Rejeki , Sri Retnoningsih , Endang Rinaldi Tunnisia Ritzkal, Ritzkal Sagala, Febry Sandrian Saputra , Faisal Adi Silvi - Siti Setiawati Siti Setiawati SITI SETIAWATI Siti Setiawati, Andika Yusuf Hidayat Sri Lestari, Tyastuti Sri Rejeki Sri Yulianto Joko Prasetyo Sudiantini, Dian Sulistiyo, Dwi Suryadi Sutarto Wijono Syahbaniar Rofiah Tb Ai Munandar, Tb Ai Theopillus J. H. Wellem Tri Dharma Putra Tri Dharma Putra Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Widianto, Ilham Rizky Wiyanto Wiyanto