Claim Missing Document
Check
Articles

Perancangan Sistem Registrasi Pelayanan Pernikahan Pada KUA Pasar Minggu Jakarta Wowon Priatna; Siti Setiawati, Andika Yusuf Hidayat
Journal of Informatic and Information Security Vol. 1 No. 2 (2020): Desember 2020
Publisher : Program Studi Teknik Informatika, Fakultas Teknik Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jiforty.v1i2.156

Abstract

The Office of Religious Affairs (KUA) is one of the work units of the Ministry of Religion which is tasked with fostering and providing services to the community at the sub-district level. The Pasar Minggu Subdistrict Religious Affairs Office as the government agency coordinates activities and carries out internal and cross-internal activities in the sub-district area. To that end, the Office of Religious Affairs carries out documentation of marriage statistics, builds mosques in its territory, monitors zakat, waqf, baitul maal and other social services, monitors population and develops sakinah family programs. In carrying out the registration of marriage, the KUA of Pasar Minggu Subdistrict still has shortcomings in the system for recording marriages that are carried out. The drawbacks include the manual marriage registration process, making it less effective and inefficient. The manual recording is still making marriage reports which are still recorded in the ledger, so if you want to find data, the staff will manually look for the report data. Seeing this obstacle, the authors have the idea to create a system that can process data easier and simple in use so as to save time and streamline the work of KUA staff. In this study, the authors used several stages of work, starting from the process of analysis, planning, design using the PHP programming language and MySQL database, to the implementation stage with an object-oriented approach using UML (Unified Modeling Language). The results obtained from a system that the author created can help KUA staff in inventorying marriage data, helping them also in making systemized marriage reports and in finding registrants and marriage reports to be given to the Head of the Office of Religious Affairs (KUA).
Optimizing Multilayer Perceptron with Cost-Sensitive Learning for Addressing Class Imbalance in Credit Card Fraud Detection Priatna, Wowon; Hindriyanto Dwi Purnomo; Ade Iriani; Irwan Sembiring; Theophilus Wellem
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5917

Abstract

The increasing use of credit cards in global financial transactions offers significant convenience for consumers and businesses. However, credit card fraud remains a major challenge due to its potential to cause substantial financial losses. Detecting credit card fraud is a top priority, but the primary challenge lies in class imbalance, where fraudulent transactions are significantly fewer than non-fraudulent ones. This imbalance often leads to machine learning algorithms overlooking fraudulent transactions, resulting in suboptimal performance. This study aims to enhance the performance of Multilayer Perceptron (MLP) in addressing class imbalance by employing cost-sensitive learning strategies. The research utilizes a credit card transaction dataset obtained from Kaggle, with additional validation using an e-commerce transaction dataset to strengthen the robustness of the findings. The dataset undergoes preprocessing with RUS and SMOTE techniques to balance the data before comparing the performance of baseline MLP models to those optimized with cost-sensitive learning. Evaluation metrics such as accuracy, recall, F1 score, and AUC indicate that the optimized MLP model significantly outperforms the baseline, achieving an AUC of 0.99 and a recall of 0.6. The model's superior performance is further validated through statistical tests, including Friedman and T-tests. These results underscore the practical implications of implementing cost-sensitive learning in MLPs, highlighting its potential to significantly enhance fraud detection accuracy and offer substantial benefits to financial institutions.
The Effects of Data Sampling and Feature Selection on Public Service Satisfaction Using an Ensemble Classifier Algorithm Priatna, Wowon
The Indonesian Journal of Computer Science Vol. 14 No. 3 (2025): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i3.4533

Abstract

Customer satisfaction is an important factor that determines quality. User satisfaction analysis can identify the service quality and measure quality through an evaluation process to improve services. This research aims to measure the performance of services provided by the village government. Villages and sub-districts offer services based on the community's specific needs. Nevertheless, by delivering impeccable service, it is possible to satisfy the community without causing physical or material harm. An essential requirement is the development of a service user classification methodology to enhance service quality, efficiently address service user grievances, detect recurring trends, and promptly offer feedback to enhance the offerings of products and services. Machine learning approaches can be used to quantify public service satisfaction in the analytical process. Machine learning is an algorithmic approach used to assess and prioritize satisfaction with public services offered by service providers. The main approach for machine learning is an ensemble classifier. The data was analyzed using Excel; then, the data was processed first to create a classification model. At the preprocessing stage, the data is grouped to obtain labels/targets to be processed based on algorithmic classification. The classification uses the Classifier aggregation algorithm. Type improvements using optimization features using the Particle Swarm Optimization (PSO) sampling algorithm and random subsampling techniques. This research produced an accuracy value before adding sampling techniques and a PSO accuracy value of 92.68. After adding sampling techniques and PSO optimization, an accuracy value of 100% was obtained
Perancangan Dan Implementasi Sistem Monitoring Arus Listrik Berbasis Iot Dengan Algoritma Moving Average Dan Thingspeak Dimas Abimanyu Prasetyo; Joni Warta; Wowon Priatna
Indonesian Journal of Education And Computer Science Vol. 3 No. 2 (2025): INDOTECH - August 2025
Publisher : PT. INOVASI TEKNOLOGI KOMPUTER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60076/indotech.v3i2.1416

Abstract

Berdasarkan data PLN, gangguan kelistrikan di wilayah perumahan meningkat sebesar 12%, sementara pembelian energi oleh pembangkit listrik naik sebesar 6% dibandingkan tahun sebelumnya. Sebagian besar gangguan disebabkan oleh ketidakstabilan arus listrik serta penggunaan peralatan rumah tangga secara bersamaan tanpa manajemen beban memadai. Pada tahun 2024, tingkat susut energi tercatat 8,55%, terdiri atas susut transmisi 2,03% dan susut distribusi 6,65%, menunjukkan bahwa pengelolaan energi yang efisien masih menjadi tantangan. Tujuan penelitian ini adalah merancang sistem yang mampu mendeteksi dan memantau faktor daya secara real-time, mengukur dan mencatat nilai energi listrik secara akurat dan real-time, serta merancang platform berbasis IoT untuk monitoring arus listrik. Penelitian dilakukan di lingkungan rumah tangga nyata, dengan penyesuaian lokasi dan waktu untuk mendukung proses pengambilan data. Hasil menunjukkan sistem berhasil mengirimkan data arus, daya, dan energi dengan interval 15 detik. Sensor PZEM-004T menunjukkan akurasi tinggi. Metode Simple Moving Average (SMA) juga memberikan hasil akurat dalam menghitung total daya. Sistem IoT yang dirancang mampu memantau penurunan faktor daya secara real-time serta mencatat energi yang digunakan. Melalui platform ThingSpeak, sistem menyediakan informasi arus listrik yang berguna bagi pengguna rumah tangga untuk mengelola konsumsi energi secara efisien.
Co-Authors -, Rasim ., Rasim Ade Iriani Adi Setiawan Agung Nugroho Agung Nugroho Agus Hidayat Agus Hidayat Aida Fitriyani, Aida Ajif Yunizar Pratama Yusuf Alexander, Allan D Alexander, Allan D. Alhillah, Yumaris Alfi Andi Lawrence Hutahaean, Johanes Andi Rahman Andri Fajriya Andry Fadjriya Annisa Oktavianti Hermadi Aprilyana, Dhea Putri Asep R. Hamdani Asep Ramdhani M Asep Ramdhani Mahbub Atika , Prima Dina Dimas Abimanyu Prasetyo Dwi Budi Srisulistiowati Dwipa Handayani Eka Nur A’ini Endang Retnoningsih Enggar Putera, dkk, Diaz Faisal Adi Saputra Fajar Mukharom Fathurrazi, Ahmad Febry Sandrian Sagala Fefbiansyah Hasibuan Galih Apriansha Pradana Hadi Kusmara Hamdani, Asep R. Hendarman Lubis Herlawati Herlawati Hindriyanto Dwi Purnomo Ikhsan Romli Ilham Rizky Widianto Irwan Sembiring Ismaniah, Ismaniah Iwan Setyawan Joni Warta Joni Warta Joniwarta Joniwarta Jumi Saroh Hidayat Kapriadi, Engkap Karyaningsih, Dentik Khoirunnisaa, Nabiilah Kustanto , Prio Lestari, Tyastuti Sri Lubis, Hendarman M. Fadhli Nursal Mahbub, Asep Ramdhani Mayadi Mayadi Meutia, Kardinah Indrianna Mugiarso Mugiarso, Mugiarso Muhammad Khaerudin Noe’man,, Achmad Nurjeli Nurjeli Pradana , Galih Apriansha Prima Dina Atika Purnomo, Rakhmat Rahmadya Trias Handayanto Rakhmat Purnomo Rasim Rejeki , Sri Retnoningsih , Endang Rinaldi Tunnisia Ritzkal, Ritzkal Sagala, Febry Sandrian Saputra , Faisal Adi Silvi - Siti Setiawati SITI SETIAWATI Siti Setiawati Siti Setiawati, Andika Yusuf Hidayat Sri Lestari, Tyastuti Sri Rejeki Sudiantini, Dian Sulistiyo, Dwi Suryadi Syahbaniar Rofiah Tb Ai Munandar, Tb Ai Theopillus J. H. Wellem Tri Dharma Putra Tri Dharma Putra Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Tyastuti Sri Lestari Widianto, Ilham Rizky Wiyanto Wiyanto