Claim Missing Document
Check
Articles

Improved Performance of Trash Detection and Human Target Detection Systems using Robot Operating System (ROS) Kisron Kisron; Bima Sena Bayu Dewantara; Hary Oktavianto
Jurnal Rekayasa Elektrika Vol 17, No 2 (2021)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v17i2.20805

Abstract

In a visual-based real detection system using computer vision, the most important thing that must be considered is the computation time. In general, a detection system has a heavy algorithm that puts a strain on the performance of a computer system, especially if the computer has to handle two or more different detection processes. This paper presents an effort to improve the performance of the trash detection system and the target partner detection system of a trash bin robot with social interaction capabilities. The trash detection system uses a combination of the Haar Cascade algorithm, Histogram of Oriented Gradient (HOG) and Gray-Level Coocurrence Matrix (GLCM). Meanwhile, the target partner detection system uses a combination of Depth and Histogram of Oriented Gradient (HOG) algorithms. Robotic Operating System (ROS) is used to make each system in separate modules which aim to utilize all available computer system resources while reducing computation time. As a result, the performance obtained by using the ROS platform is a trash detection system capable of running at a speed of 7.003 fps. Meanwhile, the human target detection system is capable of running at a speed of 8,515 fps. In line with the increase in fps, the accuracy also increases to 77%, precision increases to 87,80%, recall increases to 82,75%, and F1-score increases to 85,20% in trash detection, and the human target detection system has also improved accuracy to 81%, %, precision increases to 91,46%, recall increases to 86,20%, and F1-score increases to 88,42%.
Karakterisasi dari Properti Larutan Garam dengan Range Finder Ultrasonik Menggunakan Metode Transformasi Fourier Ihwan Dwi Wicaksono; Agus Indra Gunawan; Bima Sena Bayu Dewantara
Jurnal Rekayasa Elektrika Vol 16, No 2 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i2.15371

Abstract

In this paper we characterize the saline solution using Range Finder Ultrasonic (RFU). RFU is one kind of ultrasonic transducer that requires air as a transmission medium and commonly are used to determine distances. The advantages of this transducer are cheap and common in local market. Since it uses air as medium, the signal which is produced by transducer are easy to shape shift and has a very long noise tail wave. This phenomenon was seen in previous studies, when the transducer position was slightly shifted, the shape of the echo signal became very different. In this paper, we modified the input signal from the technique in the previous paper to improve the echo signal. Some modification of trigger signal from transmitter models were done, then calculate the echo signal to ensure the signal have smallest Signal to Noise Ratio (SNR) and noise tail wave. Furthermore, we did filtering process from echo signal and calculating using Fourier Transform which are performed to obtain accurate echo signal information of 40 KHz frequency. The results of this experiment is an improvement in the average error of calibration curve 0.1224221 (Vrms) and 0.14383881 (Vpeak). While the average error of the results of the normalization of the magnitude Fourier Transform of 40 KHz frequency is equal to 0.096973114. 
Water Quality Level for Shrimp Pond at Probolinggo Area Based on Fuzzy Classification System Fithrotul Irda Amaliah; Agus Indra Gunawan; Taufiqurrahman Taufiqurrahman; Bima Sena Bayu Dewantara; Ferry Astika Saputra
Jurnal Rekayasa Elektrika Vol 19, No 1 (2023)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v19i1.28631

Abstract

Since several years ago, vaname shrimp (Litopenaeus vannamei) has been extensively cultivated in Indonesia because it has good business opportunities. In aquaculture activities, water quality is an important factor that dramatically impacts the survival and quality of shrimp in the pond. Therefore, information of water quality must be known by the farmer for obtaining a satisfactory harvest. This study aims to develop a water quality monitoring system based on information of temperature, pH, salinity, and dissolved oxygen. The data from sensors are sent to the cloud utilizing Internet of Things (IoT) technology and then classified by a fuzzy logic system. In order to help farmers easily know the water quality of their shrimp pond, four sensor data including the result of classification from fuzzy logic are sent to the phone. After a trial of the system, 100% of the data are successfully sent to the cloud (google spreadsheet). The system also successfully classified the level of water quality as the expectation of the farmer. With this system, it is hoped that it can assist farmers in monitoring the water quality of shrimp pond to improve the quality and quantity of shrimp.
Pengukuran Speed dan Impedansi Akustik pada Tanah Liat dengan Memanfaatkan Sinyal Echo Ultrasonik Lusiana Lusiana; Agus Indra Gunawan; Bima Sena Bayu Dewantara
Jurnal Rekayasa Elektrika Vol 15, No 2 (2019)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v15i2.13815

Abstract

Each material has its own characteristics, which are represented by the value of speed/ultrasonic wave propagation speed (C) and acoustic impedance/material resistance (Ztl). One technique that can be used to obtain these characteristics is by applying ultrasonic testing. This technique utilizes two ultrasonic sensors as transmitter (UST) and receiver (USR) to get signal properties from each material. The measurement mechanism is nondestructive testing (NDT) where the material tested is not damaged so it does not change the character of the sample. In this research, material characteristics are represented by reflected signals from material (echo). To process the echo signal data and get the characteristics of the sample, we need a number of data processing algorithms such as Fast Fourier Transform (FFT), Peak Detection, and Grid Search. By processing echo from reflected signals, C and Ztl values can be obtained. From the experimental results obtained, the values of C and Ztl in sample 1 with a density of 1856.97573 g/m3 are C = 636 m/s and Ztl = 474640 Ns/m3, samples 2 with a density of 1792.94208 g/m3 of C = 491 m/s and Ztl = 408080 Ns/m3, while the sample 3 with a density of 1663.85025 g/m3 is C = 434 m/s and Ztl = 405639 Ns/m3. The value of material characterization shown that a dense clay also has higher C and Ztl.
Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil Ricky Afiful Maula; Agus Indra Gunawan; Bima Sena Bayu Dewantara; M. Udin Harun Al Rasyid; Setiawardhana Setiawardhana; Ferry Astika Saputra; Junaedi Ispianto
Jurnal Rekayasa Elektrika Vol 18, No 3 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v18i3.25903

Abstract

Shrimp cultivation is strongly influenced by pond water quality conditions. Farmers must know the appropriate action in regulating water quality that is suitable for shrimp survival. The state of water quality can be understood by measuring pond parameters using various sensors. Installing sensors equipped with artificial intelligence modules to inform water quality conditions is the right action. However, the sensor cannot be separated from errors, so it results in not being able to get data or missing data. In this case, the approach of 5 parameters of pond water quality from 13 available parameters is carried out. This paper proposes a technique to obtain lost data caused by sensor error and looks for the best model. A simple approach can be taken, such as the Handling Missing Value (HMV), which is commonly used, namely the mean, with the K-Nearest Neighbors (KNN) classifier optimized using a grid search. However, the accuracy of this technique is still low, reaching 0.739 at 20-fold cross-validation. Calculations were carried out with other methods to further improve the prediction accuracy. It was found that Linear Regression (LR) can increase accuracy up to 0.757, which outperforms different approaches such as the statistical approach to mean 0.739, mode 0.716, median 0.734, and regression approach KNN 0.742, Lasso 0.751, Passive Aggressive Regressor (PAR) 0.737, Support Vector Regression (SVR) 0.739, Kernel Ridge (KR) 0.731, and Stochastic Gradient Descent (SGD) 0.734.
Sistem Kontrol pada Automated Guided Vehicle Beroda Mekanum menggunakan Sliding Mode Controller Muhammad Faiz; Bambang Sumantri; Bima Sena Bayu Dewantara
Jurnal Rekayasa Elektrika Vol 19, No 1 (2023)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v19i1.28127

Abstract

The production in industry, are involving distribution to transport the goods. Recently, distribution activities are using unmanned vehicle, that is Automated Guided Vehicle (AGV). In real condition, AGV are facing environment with complexity of high uncertainity and unlinearity. Because of this, robust control method could be considered to be used to improve the control performance. For instance, Sliding Mode Control has good robustness to the uncertainity of the system and disturbances. However, the chattering phenomenon is one of the major issues of the sliding mode control. This phenomenon could damage the motor. This research aim to reduce chattering and improve the control performance, with modifying signum function to saturation function. This research are using ROS, V-Rep and microcontroller. Microcontroller for processing algorithm and another function. Moreover, saturation function had succcessfully reducing rise time about 30%, overshoot 16% and RMSE 0.21%.
Lip Movement Recognition using Histogram of Oriented Gradient (HOG) and Support Machine Vector (SVM) for Arabic Word Rabbani, Fahmi Muhammad Rabbani; Bima Sena Bayu Dewantara; Endra Pitowarno
The Indonesian Journal of Computer Science Vol. 12 No. 6 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i6.3596

Abstract

This research aims to develop a lip gesture recognition system in Arabic words by utilizing Histogram of Oriented Gradient (HOG) feature extraction and Support Vector Machine (SVM) classification. The evaluation was conducted on a dataset of 1749 videos with male and female participation using Modern Standard Arabic. The 10 cross-fold validation method was used to measure the performance of the system. By applying a polynomial kernel, this study achieved an accuracy rate of 95.63%, while the word recognition rate reached 96%. These results confirm the system's ability to recognize lip movements with precision, confirming the effectiveness of the approach used in visual recognition for Arabic.
Water Quality Control System Based on Web Application for Monitoring Shrimp Cultivation in Sidoarjo, East Java Fariza, Arna; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Barakbah, Aliridho; Pramadihanto, Dadet; Winarno, Idris; Badriyah, Tessy; Harsono, Tri; Syarif, Iwan; Sesulihatien, Wahjoe Tjatur; Susanti, Puspasari; Huda, Achmad Thorikul; Rachmawati, Oktavia Citra Resmi; Afifah, Izza Nur; Kurniawan, Rudi; Hamida, Silfiana Nur
GUYUB: Journal of Community Engagement Vol 4, No 3 (2023)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/guyub.v4i3.7245

Abstract

Shrimp farming plays a crucial role to the Indonesian economy, but it is facing challenges from shifting weather patterns and global warming. This research focuses on the development and implementation of a web-based water quality monitoring system for shrimp farming to address these concerns. The research, conducted in collaboration with shrimp farmers in Sidoarjo, East Java, introduces PENS Aquaculture program, which is designed to efficiently monitor pH, salinity, and temperature. The system employs Internet ofThings (IoT) technology, which allows farmers to register several ponds, analyze water parameters, and receive real-time data through tables and graphs. The research takes a mixed-methods approach, integrating quantitative data from IoT devices with qualitative insights gathered through surveys and interviews with shrimp farmers. The study aims to evaluate the influence of IoT technology on shrimp pond quality and its contribution to the production. The findings show that PENS Aquaculture application is helpful in increasing shrimp farming efficiency, providing significant insights for the fisheries and cultural sectors.
Algae content estimation utilizing optical density and image processing method Kamaluddin, Muhammad Wafiq; Gunawan, Agus Indra; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Insivitawati, Era; Asmarany, Anja; Pratama, Ariesa Editya
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6248-6257

Abstract

One of the factors that influence shrimp cultivation is the presence of algae. Precise knowing algae content in the pond is essential for effective management. Most research in the field of algae species carried out by researchers were observing Chlorella Sp. more than the other algae species, with a particular emphasis on substance concentrations. This study proposed non-invasive techniques for quantifying algae abundance, utilizing optical density (OD) and image processing (IP) methods. Three different algae species are frequently found in Indonesia i.e., Chlorella Sp., Thalassiosira Sp., and Skeletonema Sp. are used as sample. Those samples are cultured and prepared in a certain volume with a certain quantity. For experimental and observation purposes, those samples are then diluted into water based on percentage value. The experimental results provided RGB values, which were then used to establish polynomial equations. To verify these equations, two approaches were employed: synthetic image analysis and evaluation using additional data. The mean average error (MAE) was found to be 3.467 for IP method and 3.513 for OD method. It shows that IP method give better result compared to OD method in this study. However, it is very possible that the two methods will complement each other.
Robot navigation on inclined terrain using social force model Daffa, Muhammad Fariz; Dewantara, Bima Sena Bayu; Setiawardhana, Setiawardhana
IAES International Journal of Robotics and Automation (IJRA) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v13i2.pp131-139

Abstract

This research introduces an innovative approach to address the limitations of the commonly used social force model-based robot navigation method on flat terrain when applied to sloped terrain. The incline of the terrain becomes a crucial factor in calculating the robot’s steering output when navigating from the initial position to the target position while avoiding obstacles. Therefore, we propose a social forced model-based robot navigation system that can adapt to inclined terrain using inertial measurement unit sensor assistance. The system can detect the surface incline in real time and dynamically adjust friction and gravitational forces, ensuring the robot’s speed and heading direction are maintained. Simulation results conducted using CoppeliaSim show a significant improvement in speed adjustment efficiency. With this new navigation system, the robot can reach its destination in 59.935089 seconds, compared to the conventional social forced model which takes 63.506442 seconds, the robot is also able to reduce slip to reduce wasted movement. This method shows the potential of implementing a faster and more efficient navigation system in the context of inclined terrain.
Co-Authors Achmad Basuki Achmad Basuki Achmad Basuki Afifah, Izza Nur Agus Indra Gunawan Agus Indra Gunawan Agus Indra Gunawan Ahmad Fauzi Makarim Alfan Rizaldy Pratama Pratama Ali Ridho Barakbah Alif Wicaksana Ramadhan Amang Sudarsono, Amang ANUGERAH WIBISANA Anwar Anwar Apriandy, Kevin APRIANDY, KEVIN ILHAM Arif Hidayah Arif Hidayah Arifin, Muhammad Jainal Arna Fariza Arya Brahmanta Arya Brahmanta, Arya Ashadi, Imam Asmarany, Anja Aulia Dwi Maharani Aulia, Fira Bagus Nugraha Deby Ariyadi Bambang Sumantri Bambang Sumantri Catoer Ryando Chandra Edy Prianto Dadet Pramadihanto Dadet Pramadihanto Dadet Pramadihanto Daffa, Muhammad Fariz Dewanto, Raden Sanggar Dewi Mutiara Sari Djoko Purwanto Edo Bagus Prastika Endra Pitowarno Fadhillah, Excel Daris Fatekha, Rifqi Amalya Ferry Astika Saputra Fikri Aulia Fikri Aulia Fildzah Aure Gehara Zhafirah Fithrotul Irda Amaliah Gunawan, Agus Indra Gunawan, Agus Indra Hamida, Silfiana Nur Hary Oktavianto Hozumi, Naohiro Huda, Achmad Thorikul Huda, Achmad Torikul Husein Aji Pratama Idris Winarno Idris Winarno Ihwan Dwi Wicaksono Ilham Iskandariansyah Imam Ashadi IMANUDDIN, ACHMAD ILHAM Insivitawati, Era iwan Syarif Iwan Syarif Jun Miura Jun Miura, Jun Junaedi Ispianto Kamaluddin, Muhammad Wafiq Kevin Apriandy Kisron Kisron Linda Indrayanti Lusiana Lusiana M Udin Harun Al Rasyid, M Udin Harun Makarim, Ahmad Fauzi MARTINI, NI PUTU DEVIRA AYU Meiyanto, Onie Mohamad Walid Asyhari Mohamad Walid Asyhari Muhammad Abdul Haq Muhammad Anwar Sanusi Muhammad Faiz Naohiro Hozumi Oskar Natan Prastika, Edo Bagus Pratama, Ariesa Editya Prianto, Chandra Edy Prima Kristalina Puspasari Susanti Rabbani, Fahmi Muhammad Rabbani Rachmawati, Oktavia Citra Resmi Raden Sanggar Dewanto Ricky Afiful Maula Rika Rokhana Riyanto Sigit Riyanto Sigit, Riyanto Romadhon, Nur Rizky Rudi Kurniawan Sanusi, Muhammad Anwar Sesulihatien, Wahjoe Tjatur Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana, Setiawardhana Sholahuddin Muhammad Irsyad Sigit Riyanto Susanti, Puspasari Taufiqurrahman Taufiqurrahman Tessy Badriyah Tessy Badriyah, Tessy Tita Karlita Tita Karlita Titon Dutono Tri Harsono Tri Harsono ULURRASYADI, FAIZ Wahjoe Tjatur Sesulihatien Wahjoe Tjatur Sesulihatien Wibowo, Iwan Kurnianto