Claim Missing Document
Check
Articles

KLASIFIKASI SUARA JANTUNG MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION BERBASIS CIRI STATISTIS Wijaya, Nur Hudha; Soesanti, Indah; Firmansyah, Eka
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 1)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakPara ahli memerlukan konsentrasi dalam pengambilan kesimpulan untuk menentukan kelainan suara jantung manusia. Menggali berbagai macam ciri untuk mengklasifikasikan suara jantung menjadi normal dan abnormal merupakan bagian yang sangat penting. Dengan metode artificial neural network (ANN) berbasis ciri statistis ini bekerja diranah spasial sehingga tidak perlu melakukan transformasi di ranah frekwensi.  Suara jantung diklasifikasikan menjadi dua kelas yaitu normal dan abnormal. Penelitian ini terdapat data suara jantung normal sejumlah 8 suara, sedangkan data suara jantung abnormal sejumlah 13 suara. Pendekatan ciri statistis dengan menghitunng nilai mean, mode, variance, deviation, skewness, kurtosis, entropy klasifikasi dengan neural backpropagation memberikan hasil Accuracy = 91,72%, Sensitivity = 99,50%, Spesificity = 79,17%, Precision = 90,16%. Berdasarkan hasil klasifikasi dengan metode artificial neural network backpropagation menunjukkan accuracy mencapai 91,72%.  Kata kunci: ekstraksi, ciri, suara, jantung, statistik.
Prediksi Beban Listrik Menggunakan Algoritma Jaringan Syaraf Tiruan Tipe Propagasi-Balik Syahputra, Ramadoni; Syahfitra, Febrian Dhimas; Putra, Karisma Trinanda; Soesanti, Indah
Semesta Teknika Vol 23, No 2 (2020): NOVEMBER 2020
Publisher : Semesta Teknika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Artikel ini mengusulkan prediksi beban puncak menggunakan metode jaringan syaraf tiruan tipe propagasi-balik. Prediksi beban puncak transformator tenaga merupakan tugas penting dalam mengantisipasi pertumbuhan beban listrik di masa mendatang. Prediksi yang tepat dan akurat akan memfasilitasi perencanaan kapasitas pembangkit listrik yang memadai pada waktu yang tepat. Metode jaringan syaraf tiruan tipe propagasi-balik memiliki akurasi yang baik dalam tugas-tugas prediksi. Pada penelitian ini dilakukan prediksi beban puncak pada dua buah transformator tenaga dengan studi kasus di Gardu Induk Bumiayu, Brebes, Jawa Tengah, Indonesia. Parameter pelatihan adalah data pertumbuhan penduduk, produk domestik regional bruto (PDRB), dan data beban puncak selama sepuluh tahun terakhir. Hasil penelitian menunjukkan bahwa kedua unit transformator tenaga tersebut masih dapat melayani beban listrik di wilayah pelayanan Gardu Induk Bumiayu selama sepuluh tahun ke depan.   This article proposes a peak load prediction using the backpropagation neural network method. Predicting the peak load of power transformers is an important task in anticipating load growth in the future. Precise and accurate predictions will facilitate the planning of sufficient power generation capacity at the right time. The backpropagation type neural network method has good accuracy in the prediction task. In this study, a case study was carried out by predicting the peak load of power transformers at Bumiayu Substation, Brebes, Central Java, Indonesia. Training parameters consists of population growth data, gross regional domestic product (GRDP), and peak load data for the last ten years. The results showed that the two power transformer units could still serve the electricity load in the Bumiayu substation service area for the next ten years.   
Optimisasi Multi-objektif pada Rekonfigurasi Jaringan Distribusi Tenaga Listrik dengan Integrasi Pembangkit Terdistribusi Menggunakan Metode Sistem Kekebalan Buatan Syahputra, Ramadoni; Soesanti, Indah
Jurnal Teknik Elektro Vol 12, No 2 (2020): Jurnal Teknik Elektro
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jte.v12i2.26353

Abstract

This study proposes a multi-objective optimization for power distribution network reconfiguration by integrating distributed generators using an artificial immune system (AIS) method. The most effective and inexpensive technique in reducing power losses in distribution networks is optimizing the network reconfiguration. On the other hand, small to medium scale renewable energy power plant applications are growing rapidly. These power plants are operated on-grid to a distribution network, known as distributed generation (DG). The presence of DG in this distribution network poses new challenges in distribution network operations. In this study, the distribution network optimization was carried out using the AIS method. In optimization, the goal to be achieved is not only one objective but should be multiple objectives. Multi-objective optimization aims to reduce power losses, improve the voltage profile, and maintain a maintained network load balance. The AIS method has the advantage of fast convergence and avoids local minima. To test the superiority of the AIS method, the distribution network optimization with and without DG integration was carried out for the 33-bus and 71-bus models of the IEEE standard distribution networks. The results show that the AIS method can produce better system operating conditions than before the optimization. The parameters for the success of the optimization are minimal active power losses, suitable voltage profiles, and maintained load balance. This optimization has successfully increased the efficiency of the distribution network by an average of 0.61%.
Estimation of Overhead Transmission Line Fault Distance Using Unsynchronized Two-Terminal Method Syahputra, Ramadoni; Soesanti, Indah
Journal of Electrical Technology UMY Vol 2, No 1 (2018)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.2130

Abstract

This paper presents the estimation of transmission line fault distance using unsynchronized two-terminal method. In operation, high or extra-high overhead voltage transmission lines can be interrupted. The disturbance can come from internal or external interference, which is permanent or temporary. For permanent interference, the network operator must visit the location of the disturbance in order to fix it. Because the transmission line is very long, while it takes quick time to find out the location of the disturbance so that it can be repaired immediately, then a method is needed to find out the location of the disturbance. This research proposes a method for determining the location of faults based on voltage and current data at the time of interference from both ends of the transmission line. The interference voltage and current data need not be synchronized. The use of this data makes this method very simple and easy to use. However, the accuracy of the estimation results can still be relied upon. In this study, a simulation was carried out on a two-end transmission line. The transmission line has a phase disturbance to the ground. The noise resistance applied in the simulation is 0 ohms, 10 ohms, 50 ohms, and 100 ohms. The results showed that the highest estimated error was 0.3%, which indicates that this method has a high degree of accuracy.
Prediksi Beban Listrik Menggunakan Algoritma Jaringan Syaraf Tiruan Tipe Propagasi-Balik Syahputra, Ramadoni; Syahfitra, Febrian Dhimas; Putra, Karisma Trinanda; Soesanti, Indah
Semesta Teknika Vol 23, No 2 (2020): NOVEMBER 2020
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.v23i2.9940

Abstract

Artikel ini mengusulkan prediksi beban puncak menggunakan metode jaringan syaraf tiruan tipe propagasi-balik. Prediksi beban puncak transformator tenaga merupakan tugas penting dalam mengantisipasi pertumbuhan beban listrik di masa mendatang. Prediksi yang tepat dan akurat akan memfasilitasi perencanaan kapasitas pembangkit listrik yang memadai pada waktu yang tepat. Metode jaringan syaraf tiruan tipe propagasi-balik memiliki akurasi yang baik dalam tugas-tugas prediksi. Pada penelitian ini dilakukan prediksi beban puncak pada dua buah transformator tenaga dengan studi kasus di Gardu Induk Bumiayu, Brebes, Jawa Tengah, Indonesia. Parameter pelatihan adalah data pertumbuhan penduduk, produk domestik regional bruto (PDRB), dan data beban puncak selama sepuluh tahun terakhir. Hasil penelitian menunjukkan bahwa kedua unit transformator tenaga tersebut masih dapat melayani beban listrik di wilayah pelayanan Gardu Induk Bumiayu selama sepuluh tahun ke depan.   This article proposes a peak load prediction using the backpropagation neural network method. Predicting the peak load of power transformers is an important task in anticipating load growth in the future. Precise and accurate predictions will facilitate the planning of sufficient power generation capacity at the right time. The backpropagation type neural network method has good accuracy in the prediction task. In this study, a case study was carried out by predicting the peak load of power transformers at Bumiayu Substation, Brebes, Central Java, Indonesia. Training parameters consists of population growth data, gross regional domestic product (GRDP), and peak load data for the last ten years. The results showed that the two power transformer units could still serve the electricity load in the Bumiayu substation service area for the next ten years.   
EKSTRAKSI CIRI FOVEA AVASCULAR ZONE (FAZ) BERBASIS WAVELET PADA PENDERITA DIABETIC RETINOPATHY Purnamasar, Dewi; Nugroho, Hanung Adi; Soesanti, Indah
Prosiding SNATIF 2014: Prosiding Seminar Nasional Teknologi dan Informatika
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Jenis Diabetic Retinopathy (DR) adalah komplikasi okular yang paling umum dan serius dari Diabetes Mellitus (DM) yang mengganggu retina. Komplikasi ini menyebabkan kebutaan. Faktor yang menentukan DR adalah Fovea Avascular Zone (FAZ). Untuk mengetahui karakteristik dari FAZ dengan kasat mata sangat susah, karena letaknya berada di daerah makula dan tertutup pembuluh darah vessel. Tujuan dari penelitian ini adalah untuk mengetahui ekstraksi ciri FAZ dengan membandingkan wavelet db2,db9,symlet dan coif1 untuk mendapatkan nilai entropy maupun energi serta untuk mengetahui nilai keakuratan dari masing-masing level penderita DR dengan mata normal. Metode penelitian ini menggunakan wavelet, data base yang digunakan adalah citra retina messidor. Dari hasil penelitian yang telah dilakukan dapat diketahui bahwa wavelet coif1 mempunyai akurasi yang lebih tinggi dibandingkan dengan db2,db9 dan wavelet symlet. Wavelet coif1 menunjukkan tingkat error kesalahan bernilai 21,53%, akurasinya 78,46%. Akurasinya lebih tinggi dibandingkan dengan wavelet yang lain. Hal ini menunjukkan bahwa wavelet coif1 dapat membedakan FAZ mata normal dengan penderita DR. Kata kunci: entropy, Fovea Avascular Zone, vessel, wavelet.
Klasifikasi Wajah Kambing Peranakan Ettawa (PE) Jantan Berbasis Perseptron Chamim, Anna Nur Nazilah; Soesanto, Adhi; Soesanti, Indah
Semesta Teknika Vol 17, No 2 (2014): NOVEMBER 2014
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.v17i2.420

Abstract

Goat Peranakan Ettawa ( PE ) is a kind of superior goat derived from goat crosses, between Ettawa (Jamnapari ) from India and Kambing Kacang (Bean Goat) from Java. A factor to determine quality of goat PE is it’s face. More than 30 cm ears length and the head color is black represents good quality. More better the quality of goat face, means higher selling price. In this study, male goat face is classified into class good quality, less good, and not good at data such as photo / image In the market, classification done by visual observation, so many farmers have difficulty in classifying the face of a goat. For that purpose, a system is needed that capable for classifying a goat face to facilitate farmers in classifying.This classification system uses Perceptron Method, is a method of guided learning using characteristic as input those are ears length, black value and brown face value. Images are used as training images as much as 9 images, and test images are 20 images. This system could classificating PE goat face with success rate of 95% and 1 error from 20 testing images. Error occured because the background was detected as black and image taking that not precise.
Design and development of Web-Based Information System for The Batik Industry Soesanti, Indah
IPTEK Journal of Proceedings Series Vol 1, No 1 (2014): International Seminar on Applied Technology, Science, and Arts (APTECS) 2013
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23546026.y2014i1.388

Abstract

An Information system is any combination of information technology and people's activities using that technology to support operations, management, and decision-making. Some industries need web-based information system. Information system for the batik industry is designed to process data such as text, image, and produce information. The planning of web-based information systems needs a proactive review of the capabilities of the Internet technology to serve the particular needs of the firm and its customers. Process steps for designing the batik industry information system are software architecture, algorithm, data structure, and interface representations. The results show that the web-based information system that designed in this research is implemented successfully.
Modeling of Wind Power Plant with Doubly-Fed Induction Generator Syahputra, Ramadoni; Soesanti, Indah
Journal of Electrical Technology UMY Vol 1, No 3 (2017)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jet.1317

Abstract

This paper presents the modeling and simulation of wind turbine driven by doubly-fed induction generator which feeds ac power to the distribution network. A stator flux oriented vector control is used for the variable speed doubly-fed induction generator operation. By controlling the generator excitation current the amplitude of the stator EMF is adjusted equal to the amplitude of the grid voltage. To set the generator frequency equal to the grid one, the turbine pitch angle controller accelerates the turbine/generator until it reaches the synchronous speed. The system is modeled and simulated in the Matlab Simulink environment in such a way that it can be suited for modeling of all types of induction generator configurations. The model makes use of rotor reference frame using dynamic vector approach for machine model. The system is also simulated when a fault occurs in 25 kV grid of distribution system. The results of a single line to ground fault and a symmetrical three-phase ground fault is analyzed. The results show that the wind energy conversion system can normally operate in fault conditions.
Analisis Kinerja Metode Fuzzy Teroptimasi PSO untuk Strategi Kendali MPPT pada Sistem Solar Photovoltaic Soesanti, Indah; Syahputra, Ramadoni
Jurnal Teknik Elektro Vol 13, No 2 (2021): Jurnal Teknik Elektro
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jte.v13i2.33477

Abstract

A fuzzy control system has been widely used in various problem solving. Its performance can be optimized using particle swarm optimization (PSO). This performance can be proven by applying it to the maximum power point tracking (MPPT) control strategy on solar photovoltaic systems. Solar photovoltaic power generation systems are increasingly popular because they are clean and renewable energy sources. The power generated by solar photovoltaic is strongly influenced by solar irradiation and the load carried. In order to obtain maximum power output, an MPPT control strategy is needed. An MPPT control strategy based on fuzzy and PSO hybrid control systems is proposed in this research. The fuzzy-PSO method selects and produces the optimal duty cycle for the boost dc-dc converter in a solar photovoltaic system. Variable duty cycle due to solar irradiation and load changes can be conditioned by the fuzzy-PSO-based MPPT method to extract maximum power. The research results show that the fuzzy-PSO method can control the solar photovoltaic output voltage through a dc-dc converter to produce maximum power at various solar irradiations. Test result by applying a resistive load produces output power at the maximum point. The best result is obtained in the 100 Ohm load test: the response time of 0.0818 seconds and excellent robustness.
Co-Authors Adha Imam Cahyadi Adhi Soesanto, Adhi Adhi Susanto Adhistya Erna Permanasari Afrisal, Hadha Agus Eko Minarno Agus Jamal Al-Fahsi, Resha Dwika Hefni Andrey Nino Kurniawan Andrey Nino Kurniawan Nino Kurniawan Andrey Nino Kurniawan, Andrey Nino Anna Nur Nazilah Chamim Aqil Aqthobirrobbany Aqthobirrobbany, Aqil Arief Rachma Wibowo Bambang Sutopo Bana Handaga Beta Estri Adiana Cepi Ramdani Chamim, Anna Nur Nazilah Danny Kurnianto Desyandri Desyandri Dewi Purnamasar Diah Priyawati Dian Nova Kusuma Hardani Domy Kristomo Dwi Rochmayanti Dwi Rochmayanti Dwi Rochmayanti Eka Firmansyah Elfrida Ratnawati Faaris Mujaahid Fathania Firwan Firdaus Fikri Zaini Baridwan Hanifah Rahmi Fajrin Hanung Adi Nugroho Hedi Purwanto Hendriyawan A., M. S. Henry Sulistyo Hidayatul Fitri Hotama, Christianus Frederick Husnul Rahmawati Sakinnah I Made Agus Wirahadi Putra Ikhwan Mustiadi Indriana Hidayah Isbadi Urifan Karisma Trinanda Putra, Karisma Trinanda Krisna Nuresa Qodri Litasari Litasari Litasari M.S. Hendriyawan Achmad Maesadji Tjokronagoro Maesadji Tjokronagoro Maesadji Tjokronegoro Medycha Emhandyksa Meirista Wulandari Muhamad Yusvin Mustar Muhammad Arzanul Manhar Muhammad Rausan Fikri Noor Akhmad Setiawan Nurokhim Nurokhim Oki Iwan Pambudi Oktoeberza, Widhia KZ Oyas Wahyunggoro Paulus Tofan Rapiyanta Pipit Utami Ramadoni Syahputra Ratnasari Nur Rohmah Rina Susilowati Risanuri Hidayat Rudy Hartanto Sekar Sari Siti Helmyati Soesanto, Adhi Sulistyo, Henry Sunu Wibirama Syahfitra, Febrian Dhimas Thomas Sri Widodo Thomas Sri Widodo Thomas Sri Widodo Thomas Sri Widodo Tole Sutikno Warsun Najib Widyawan Widyawati Prima, Widyawati Wijaya, Nur Hudha Wijaya, Nur Hudha Wiyagi, Rama Okta Yudhi Agussationo Yundari, Yundari