Claim Missing Document
Check
Articles

On left fq-derivations of B-algebras Yattaqi, Egytia; Gemawati, Sri; Hasbiyati, Ihda
Science, Technology and Communication Journal Vol. 2 No. 1 (2021): SINTECHCOM Journal (October 2021)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v2i1.197

Abstract

In this paper, we introduce the notion of left fq-derivation of B-algebra and investigate some related properties. Among them are properties of left fq-derivation  of B-algebra  and given properties of . Then, we discuss the properties of the regularleft fq-derivation on B-algebras and composition properties of fq-derivation on particular B-algebra, namely on BM-algebra.
t-derivations in BP-algebras Siswanti, T. Fuja; Gemawati, Sri; Syamsudhuha, Syamsudhuha
Science, Technology and Communication Journal Vol. 1 No. 3 (2021): SINTECHCOM Journal (June 2021)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v1i3.199

Abstract

BP-algebras is a non-empty set (X, *, 0) with the binary operation “*” satisfies the axioms (BP1) x * x = 0, (BP2) x * (x * y) = y, (BP3) (x * z) * (y * z) = x * y for all x, y, z = X . In this paper, we define the concept of (l, r) and (r, l) t-derivation in BP-algebra and investigate their properties. Based on the concepts of (l, r) and (r, l) t-derivation in BP-algebra, the properties of t-derivation in BP-algebra are constructed.
Optimalisasi Kinerja Aparat Desa di Desa Mekong Melalui Pelatihan Teknologi Informasi Gemawati, Sri; Marjulisa, M Rike; Putri, Ayunda; Ali, Irsan Taufik; Rasdana, Oki
Unri Conference Series: Community Engagement Vol 6 (2024): Seminar Nasional Pemberdayaan Masyarakat
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/unricsce.6.389-393

Abstract

In the digital era, skills in using Microsoft Office are very important for village officials. This is the background of the Microsoft Office training for village officials in Desa Mekong, Kecamatan Tebing Tinggi Barat, Kepualauan Meranti. The training materials include Microsoft Word, Excel, and Power Point. This training uses the “Learning by Doing” method which allows participants to immediately engage in practice after the presentation of the material. Participating village officials showed significant improvement in knowledge and skills using Microsoft Office. The enthusiasm of the participants and the assistance by the students also enriched the learning process, making it more interactive and in-depth. This training has positive implications for improving the competence of village officials and the quality of public services in Desa Mekong.
Derivasi di Pseudo BG-aljabar Putri, Ayuni; Gemawati, Sri; Syamsudhuha, Syamsudhuha
Jambura Journal of Mathematics Vol 7, No 1: February 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v7i1.28306

Abstract

A BG-algebra  is defined as a non-empty set  that includes a constant 0 and a binary operation  which adheres to the following axioms: (𝐵G1) , (𝐵G2) , and (𝐵G3)  for all . Pseudo BG-algebra is a generalization of BG-algebra, which is an algebra  that satisfies the following axioms: (pBG1) , (pBG2) , and (pBG3)  for all . In BG-algebra introduced an (l, r)-derivation, an (r, l)-derivation, and left derivation. This article aims to discuss and develop the concept of derivations in pseudo BG-algebras by introducing two new operations,  and , within the structure of pseudo BG-algebra . These operations are defined as  and  for each . In this research, the  operation in BG-algebra derivations replaced with the  and  operations under certain conditions, leading to the formulation of new types of derivations. Through this approach, three main types of derivations in pseudo BG-algebras are identified: (l, r)-derivation, (r, l)-derivation, and left derivation of type 1 and type 2. The results reveal several significant properties, including a formula for , the role of the special element 0, regularity in derivations, and the relationship between regular derivations and  as the identity function. This study contributes to advancing the theory of pseudo BG-algebras and its potential applications in other algebraic structures.
Konstruksi dan Analisis r-Ideal di BG-aljabar Beauty, Meivy Andhika; Gemawati, Sri; Deswita, Leli
Jambura Journal of Mathematics Vol 7, No 1: February 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v7i1.30097

Abstract

A non-empty set G with a binary operation ∗ and a constant 0 that satisfies the following axioms: , , and  for all  is called a BG-algebra. A non-empty subset I of G is said to be an ideal in G if it satisfies: (i)  and (ii)  and  implies  for all . This article introduces the new concept of r-ideal in BG-algebra, which is an extension of the ideal in BN-algebra. Unlike the definition of an ideal in BN-algebra, an r-ideal only requires a non-empty subset I of G without the need to satisfy the full ideal conditions. This study examines the properties of r-ideals and their relationships with subalgebras, normal, and ideals in BG-algebra. In the final part, it is concluded that every subalgebra is an r-ideal in BG-algebra, and every normal ideal is also an r-ideal.
Completely Closed Filter in BN -Algebra Ramadhan, Andi Rio; Gemawati, Sri; Kartini, Kartini
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 7, No 1 (2025)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v7i1.42170

Abstract

A BN-algebra (A; *,0) is a non-empty set A equipped with a binary operation * and a constant 0, which satisfies the following axioms: (B1)  a*a=0, (B2)  a*0=a, and (BN)  (a*b)*c=(0*c)*(b*a) for all a,b,c ∈A. A subset I of A is called an ideal in A if it satisfies (i) 0∈I, (ii) if b∈I and a*b∈I imply a∈I, for all a,b∈A. This paper presents an original investigation on the completely closed filter in BN-algebra, a topic that has not been extensively explored in previous research. The concepts of filter, closed filter, and completely closed filter in BN-algebra are defined, which can always be associated with the concept of an ideal in BN-algebra. It begins by defining a filter in BN-algebra and then providing additional conditions to make it a closed and completely closed filter. The results show that every filter in BN-algebra has a condition (D), and every non-empty subset of BN1-algebra is a closed filter. Furthermore, every normal ideal in BN-algebra, ideal in Coxeter algebra, and subalgebra in BN1-algebra is a completely closed filter.Keywords: BN-algebra; Completely closed filter; Filter; Ideal. AbstrakBN-Aljabar (A; *,0) adalah himpunan tak kosong A yang dilengkapi dengan operasi biner * dan konstanta 0, yang memenuhi aksioma berikut: (B1) a*a=0,(B2) a*0=a, dan (BN) (a*b)*c=(0*c)*(b*a) untuk setiap a,b,c ∈A. Subhimpunan I dari A disebut ideal di A jika memenuhi: (i) 0∈I, (ii) untuk setiap b∈I dan a*b∈I mengakibatkan a∈I, untuk setiap a,b∈A. Dalam artikel ini, kami menyajikan sebuah studi baru tentang filter tertutup lengkap dalam BN-aljabar, sebuah topik yang belum banyak dieksplorasi dalam penelitian sebelumnya. Konsep filter, filter tertutup, dan filter tertutup lengkap dalam BN-Aljabar didefinisikan, yang mana selalu dapat dikaitkan dengan konsep ideal dalam BN-Aljabar. Dimulai dengan mendefinisikan filter dalam BN-aljabar, kemudian memberikan kondisi tambahan untuk menjadikannya filter tertutup dan filter tertutup lengkap. Hasil yang diperoleh adalah setiap filter dalam BN-Aljabar dengan kondisi (D) dan setiap subset tak kosong dari BN1-aljabar merupakan filter tertutup. Lebih jauh, setiap ideal normal dalam BN-aljabar, ideal dalam Coxeter aljabar, dan subaljabar dalam BN1-aljabar merupakan filter tertutup lengkap.Kata Kunci: BN-aljabar; Filter tertutup lengkap; Filter; Ideal. 2020MSC: 03G25, 03G10
DERIVATIONS OF PSEUDO BE-ALGEBRAS Indryantika, Nessy; Gemawati, Sri; Kartini, Kartini
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp1565-1574

Abstract

Pengembangan Bahan Ajar Matematika Bidang Kalkulus Tingkat SMA Melalui Pengabdian Masyarakat di Kabupaten Kepulauan Meranti Zulkarnain, Zulkarnain; Danil Hendry Gamal, Moh; M, Imran; Hasbiyati, Ihda; Gemawati, Sri; M, Musraini; Mu’tamar, Khozin
JCOMMITS: Journal of Community Empowerment, Inovation, and sustainability Vol. 3 No. 1 (2025): Jcommits (The Journal of Community Empowerment, Innovation, and Sustainability)
Publisher : LPPM UNIVERSITAS LANCANG KUNING

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kalkulus merupakan salah satu materi penting dalam pembelajaran matematika di tingkat sekolah menengah atas, khususnya dalam pendidikan STEM. Namun, banyak guru mengalami kesulitan dalam menyusun soal yang dapat meningkatkan pemahaman konseptual siswa. Penelitian ini bertujuan untuk mengukur pemahaman guru terhadap konsep kalkulus serta kemampuan mereka dalam mengembangkan soal yang dimodifikasi melalui program pengabdian masyarakat. Studi ini melibatkan 23 guru matematika sekolah menengah atas di Kabupaten Kepulauan Meranti. Program ini terdiri dari tiga tahapan utama, yaitu: (1) asesmen awal menggunakan soal kalkulus yang mencakup persamaan, turunan, pertidaksamaan, dan kurva, (2) diskusi serta sesi pembelajaran terpandu, dan (3) latihan pembuatan soal modifikasi berdasarkan pertanyaan yang telah diberikan. Hasil penelitian menunjukkan bahwa beberapa guru memiliki pemahaman yang baik terhadap konsep dasar kalkulus, namun banyak yang mengalami kesulitan dalam memahami materi integral. Selain itu, kemampuan guru dalam menyusun soal modifikasi bervariasi. Temuan ini menegaskan pentingnya pelatihan profesional yang berkelanjutan serta kolaborasi antar lembaga pendidikan untuk meningkatkan keterampilan pedagogik guru dalam pengajaran kalkulus. Inisiatif lanjutan perlu difokuskan pada peningkatan kompetensi guru, terutama dalam memahami dan mengajarkan topik kalkulus yang lebih kompleks seperti aplikasi integral.
T-IDEAL AND α-IDEAL OF BP-ALGEBRAS Gemawati, Sri; M, Musraini; Putri, Ayunda; Marjulisa, Rike; Fitria, Elsi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 2 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss2pp1129-1134

Abstract

This paper explores the characteristics of two distinct ideal types within BP-algebra, specifically T-ideal and -ideal. Initially, we elucidate the characteristics of the T-ideal in BP-algebra, establishing its connections with the perfect, normal, and normal ideal in BP-algebra. Subsequently, we demonstrate that the kernel of a homomorphism in BP-algebra constitutes a T-ideal. Moving forward, we delineate the properties of -ideal in BP-algebra, highlighting its relationships with ideal and filter in the context of BP-algebra. Additionally, we explore the characteristics of -ideal and subalgebra in 0-commutative BP-algebra. Finally, it is proven that the kernel of a homomorphism in 0-commutative BP-algebra can be identified as an -ideal.
Completely Closed Filter in BN -Algebra Ramadhan, Andi Rio; Gemawati, Sri; Kartini, Kartini
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 7 No. 1 (2025)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v7i1.42170

Abstract

A BN-algebra (A; *,0) is a non-empty set A equipped with a binary operation * and a constant 0, which satisfies the following axioms: (B1) a*a=0, (B2) a*0=a, and (BN) (a*b)*c=(0*c)*(b*a) for all a,b,c ∈A. A subset I of A is called an ideal in A if it satisfies (i) 0∈I, (ii) if b∈I and a*b∈I imply a∈I, for all a, b ∈ A. This paper presents an original investigation on the completely closed filter in BN-algebra, a topic that has not been extensively explored in previous research. The concepts of filter, closed filter, and completely closed filter in BN-algebra are defined, which can always be associated with the concept of an ideal in BN-algebra. It begins by defining a filter in BN-algebra and then providing additional conditions to make it a closed and completely closed filter. The results show that every filter in BN-algebra has a condition (D), and every non-empty subset of BN1-algebra is a closed filter. Furthermore, every normal ideal in BN-algebra, ideal in Coxeter algebra, and subalgebra in BN1-algebra is a completely closed filter.Keywords: BN-algebra; completely closed filter; filter; ideal.AbstrakBN-Aljabar (A; *,0) adalah himpunan tak kosong A yang dilengkapi dengan operasi biner * dan konstanta 0, yang memenuhi aksioma berikut: (B1) a*a=0,(B2) a*0=a, dan (BN) (a*b)*c=(0*c)*(b*a) untuk setiap a,b,c ∈A. Subhimpunan I dari A disebut ideal di A jika memenuhi: (i) 0∈I, (ii) untuk setiap b∈I dan a*b∈I mengakibatkan a∈I, untuk setiap a,b∈A. Dalam artikel ini, kami menyajikan sebuah studi baru tentang filter tertutup lengkap dalam BN-aljabar, sebuah topik yang belum banyak dieksplorasi dalam penelitian sebelumnya. Konsep filter, filter tertutup, dan filter tertutup lengkap dalam BN-Aljabar didefinisikan, yang mana selalu dapat dikaitkan dengan konsep ideal dalam BN-Aljabar. Dimulai dengan mendefinisikan filter dalam BN-aljabar, kemudian memberikan kondisi tambahan untuk menjadikannya filter tertutup dan filter tertutup lengkap. Hasil yang diperoleh adalah setiap filter dalam BN-Aljabar dengan kondisi (D) dan setiap subset tak kosong dari BN1-aljabar merupakan filter tertutup. Lebih jauh, setiap ideal normal dalam BN-aljabar, ideal dalam Coxeter aljabar, dan subaljabar dalam BN1-aljabar merupakan filter tertutup lengkap.Kata Kunci: BN-aljabar; filter tertutup lengkap; filter; ideal.2020MSC: 03G25, 03G10
Co-Authors Abd. Ghafur Bin Ahmad Abd. Ghafur Bin Ahmad Abdul Hadi Ade Nova Rahma Ade Novia Rahma Afriastuti, Sherly Agusni ' Alberta Rika Pratiwi Ali Subroto Amalina Amalina, Amalina Andriani, Dessy Ani Ani Ardiansyah Yan Hakim Nasution Asli Sirait Ayunda Putri Barutu, Fabelia Andani Beauty, Meivy Andhika Bona Martua Siburian Chitra Valentika Danil Hendry Gamal, Moh Delisa Pratiwi Dessy Andriani Dessy Andriani . Egytia Yattaqi Elsi Fitria Endah Dwi Jayanti Endang Lily Fabelia Andani Barutu Fitra, Mardani Gamal, M.D.H Hasriati Hasriati Hendra Maryulis Husnul Khatimah Husnul Khatimah Ihda Hasbiyati Indryantika, Nessy Irma . Fitri IRSAN TAUFIK ALI Jufri Jufri Jufri Jufri Jufri, Jufri Kartini Kartini Leli Deswita Lydia . Ariftalia M. D. H. . Gamal M. Imran M. Mashadi M.D.H Gamal M.D.H Gamal Mas hadi Mashadi Mashadi ' Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mirfaturiqa, Mirfaturiqa Misra Herlina Musraini M Musraini, Musraini Mu’tamar, Khozin novelia . . Novita Yuliardani Novrialman ' Nur Meliana Sari Nurbai, Reihani Jemila Oki Rasdana Pratiwi, Delisa Puteri Januarti Putri, Ayuni Ramadhan, Andi Rio Rika Pratiwi Rika Pratiwi Rike Marjulisa Riza . Gushelsi Rora Oktafia Selva Amelia Sandi Siswanti, T. Fuja Sri . Handayani Sri Sukmawati Sugianti, Khoirunnisa Surlina Surlina Syamsudhuha Syamsudhuha Welly Desriyati Wellya Aziz Wita . Maywidia Yattaqi, Egytia Yeni . Azrida Yuliardani, Novita Yulismansyah ' Zulkarnain Zulkarnain