Claim Missing Document
Check
Articles

The k-Tribonacci Matrix and the Pascal Matrix Gemawati, Sri; Musraini, Musraini; Mirfaturiqa, Mirfaturiqa
Jambura Journal of Mathematics Vol 6, No 1: February 2024
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v6i1.24131

Abstract

This article discusses the relationship between the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn, by first constructing the k-Tribonacci matrix and then looking for its inverse. From the inverse k-Tribonacci matrix, unique characteristics can be constructed so that general shapes can be constructed, and then from the relationship of the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn obtain a new matrix, i.e. Un(k). Furthermore, a factor is derived from the relationship of the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn i.e. Pn = Tn(k)Un(k).
The Existence of Cocyclic Formed by Angle Trisectors in a Butterfly Quadrilateral and its Application in Physics Fitra, Mardani; Mashadi; Gemawati, Sri
Jurnal Penelitian Pendidikan IPA Vol 11 No 2 (2025): February
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v11i2.9909

Abstract

One of the most intriguing results related to angle trisectors in convex quadrilaterals is Morley's Theorem, which several authors have subsequently extended to non-convex quadrilaterals. Numerous studies have explored the side lengths of angle bisectors, angle trisectors, and the area ratios formed by angle trisectors in both convex and non-convex quadrilaterals. However, no research has discussed the problem of angle trisectors in butterfly quadrilaterals. Therefore, this paper aims to extend the concept of angle trisectors to butterfly quadrilaterals. Various other quadrilaterals will be formed from the construction of these angle trisectors. By employing the concept of concyclic, we will demonstrate the existence of several concyclic quadrilaterals arising from this trisector construction. Triangle angles in butterfly quadrilaterals in geometry play an important role in physics. Geometry provides a visual and mathematical language that allows us to describe, analyze, and understand various physical phenomena.
Co-Authors Abd. Ghafur Bin Ahmad Abd. Ghafur Bin Ahmad Abdul Hadi Ade Nova Rahma Ade Novia Rahma Afriastuti, Sherly Agusni ' Alberta Rika Pratiwi Ali Subroto Amalina Amalina, Amalina Andriani, Dessy Ani Ani Ardiansyah Yan Hakim Nasution Asli Sirait Ayunda Putri Barutu, Fabelia Andani Beauty, Meivy Andhika Bona Martua Siburian Chitra Valentika Danil Hendry Gamal, Moh Delisa Pratiwi Dessy Andriani Dessy Andriani . Egytia Yattaqi Elsi Fitria Endah Dwi Jayanti Endang Lily Fabelia Andani Barutu Fitra, Mardani Gamal, M.D.H Hasriati Hasriati Hendra Maryulis Husnul Khatimah Husnul Khatimah Ihda Hasbiyati Indryantika, Nessy Irma . Fitri IRSAN TAUFIK ALI Jufri Jufri Jufri Jufri Jufri, Jufri Kartini Kartini Leli Deswita Lydia . Ariftalia M. D. H. . Gamal M. Imran M. Mashadi M.D.H Gamal M.D.H Gamal Mas hadi Mashadi Mashadi ' Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mashadi Mirfaturiqa, Mirfaturiqa Misra Herlina Musraini M Musraini, Musraini Mu’tamar, Khozin novelia . . Novita Yuliardani Novrialman ' Nur Meliana Sari Nurbai, Reihani Jemila Oki Rasdana Pratiwi, Delisa Puteri Januarti Putri, Ayuni Ramadhan, Andi Rio Rika Pratiwi Rika Pratiwi Rike Marjulisa Riza . Gushelsi Rora Oktafia Selva Amelia Sandi Siswanti, T. Fuja Sri . Handayani Sri Sukmawati Sugianti, Khoirunnisa Surlina Surlina Syamsudhuha Syamsudhuha Welly Desriyati Wellya Aziz Wita . Maywidia Yattaqi, Egytia Yeni . Azrida Yuliardani, Novita Yulismansyah ' Zulkarnain Zulkarnain