p-Index From 2021 - 2026
6.306
P-Index
This Author published in this journals
All Journal Jurnal Ilmu Komputer Jurnal Pendidikan Teknologi dan Kejuruan Semantik Syntax Jurnal Informatika Scan : Jurnal Teknologi Informasi dan Komunikasi Telematika : Jurnal Informatika dan Teknologi Informasi Jurnal Teknologi Informasi dan Ilmu Komputer Transformasi: Jurnal Pengabdian Masyarakat Jurnal Informatika dan Teknik Elektro Terapan CESS (Journal of Computer Engineering, System and Science) JOIV : International Journal on Informatics Visualization JIKO (Jurnal Informatika dan Komputer) JUTIK : Jurnal Teknologi Informasi dan Komputer Jurnal Sains dan Informatika SINTECH (Science and Information Technology) Journal Jurnal RESISTOR (Rekayasa Sistem Komputer) WIDYA LAKSANA Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Jurnal Teknologi Terpadu Antivirus : Jurnal Ilmiah Teknik Informatika Jurnal Mantik Jusikom: Jurnal Sistem Informasi Ilmu Komputer JATI (Jurnal Mahasiswa Teknik Informatika) CICES (Cyberpreneurship Innovative and Creative Exact and Social Science) Gestalt : Jurnal Desain Komunikasi Visual Jifosi International Journal Of Computer, Network Security and Information System (IJCONSIST) Abdimas Altruis: Jurnal Pengabdian Kepada Masyarakat Jurnal WIDYA LAKSMI (Jurnal Pengabdian Kepada Masyarakat) Jurnal Informatika Teknologi dan Sains (Jinteks) Jurnal Ilmiah Edutic : Pendidikan dan Informatika Jurnal Krisnadana Jurnal Ilmiah Teknik Informatika dan Komunikasi Harmoni: Jurnal Ilmu Komunikasi Dan Sosial Jurnal Krisnadana Jurnal Indonesia : Manajemen Informatika dan Komunikasi Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika Modem : Jurnal Informatika dan Sains Teknologi KOMET
Claim Missing Document
Check
Articles

Case based Reasoning Prediksi Waktu Studi Mahasiswa Menggunakan Metode Euclidean Distance dan Normalisasi Min-Max Wahanani, Henni Endah; Prami Swari, Made Hanindia; Akbar, Fawwaz Ali
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 6: Desember 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020763880

Abstract

Salah satu penyebab dari lamanya waktu tempuh mahsiswa di Jurusan Informatika UPN “Veteran” Jawa Timur adalah sullitnya memantau kemajuan studi mahasiswa secara seksama, mengingat jumlah mahasiswa yang cukup banyak serta pihak akademik belum memiliki metode yang akurat untuk memetakan mahasiswa yang diprediksi akan mengalami keterlambatan dalam penyelesaian studinya. Melalui perkembangan teknologi informasi yang berkembang pesat saat ini, maka sangat dimungkinkan untuk membuat sebuah sistem yang mampu memprediksi kemungkinan keterlambatan kelulusan mahasiswa melalui penggunaan berbagai metode komputasi yang ada. Salah satu pendekatan yang dapat digunakan untuk membuat sebuah sistem prediksi kelulusan adalah menggunakan pendekatan populer yang digunakan dalam pembuatan sistem cerdas (intelligent system) yaitu case based reasoning (CBR). Langkah-langkah yang dilakukan pada penelitian ini adalah melakukan pengumpulan dan memasukkan data kasus pada basis kasus, melakukan praprosesing yakni normalisasi atribut yang akan digunakan dalam perhitungan similartitas antar kasus menggunakan normalisasi min-max, implementasi CBR menggunakan metode Euclidean Distance, serta melakukan pengujian pada 141 data kasus. Dari sisi perhitungan akurasi, sistem mampu memberikan nilai akurasi paling tinggi sebesar 100% pada pada pengujian berdasarkan predikat kelulusan, sedangkan berdasarkan ketepatan waktu, sistem mampu memberikan akurasi tertinggi dengan nilai 85,71%, dan sistem mampu memberikan nilai akurasi tertinggi sebesar 71,43% pada pengujian berdasarkan massa studi. Untuk pengujian presisi, sistem mampu mengasilkan nilai terbesar berturut-turut sebesar 90,90%, 43,33%, dan 100%. Sedangkan pada pengujian sensitivitas, sistem berturut-turut mampu menghasilan nilai sebesar 90,90%, 40,48%, dan 100%. Hasil pengujian ini tentunya sangat bergantung dari basis kasus yang dimiliki, oleh sebab itu perbaikan dan peningkatan jumlah kasus yang dimiliki diharapkan mampu meningkatkan performa sistem rekomendasi. AbstractOne of the reasons for the length of study time for students of the Informatics study program of UPN "Veteran" Jawa Timur is the difficulty of monitoring the progressy, given the large number of students and academics do not have an accurate method to map students who are predicted to experience delays. It is possible to create a system that is able to predict the possibility of student graduation delay through the use of various existing computational methods. One approach that can be used to create a graduation prediction system is to use the popular approach namely case based reasoning (CB). The steps taken in this study are collecting and entering case data, normalizing the attributes using min-max normalization, implementing CBR using the Euclidean Distance, and system testing in 141 data case. System is able to provide the highest accuracy value of 100% in testing based on the predicate of graduation, while based on timeliness, the system is able to provide the highest accuracy value with a value of 85.71%, and the system is able to provide the highest accuracy value of 71.43%. on testing based on the study period. For precision testing, the system was able to produce the largest values of 90.90%, 43.33% and 100%, respectively. Whereas in the sensitivity test, the system was able to produce values of 90.90%, 40.48%, and 100% respectively. The results of this test are of course very dependent on the basis of cases that are owned, therefore improvements and an increase in the number of cases owned are expected to be able to improve the performance.
Rancang Bangun Sistem Konversi Mata Kuliah (Studi Kasus : Prodi Informatika, Fasilkom, UPN "Veteran" Jawa Timur) Wahanani, Henni Endah; Prami Swari, Made Hanindia; Akbar, Fawwaz Ali
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 3: Juni 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022935740

Abstract

Salah satu persayaratan akademik untuk lulus dari program sarjana adalah telah menyelesaikan kredit 144 SKS. Permasalahan seringkali ketika dilakukan pencetakan transkrip nilai maka mata kuliah yang muncul seringkali double. Kondisi lain yang seringkali terjadi adalah jumlah SKS yang berkurang dari yang dicatat oleh mahasiswa serta perbedaan nama mata kuliah. Hal ini sangat mungkin terjadi akibat adanya perubahan kurikulum yang terjadi secara berkala pada sebuah prodi. Berdasarkan hal tersebut maka penelitian ini dibuat untuk membangun sistem konversi mata kuliah menggunakan pendekatan terstruktur dengan metode waterfall. Pengembangan sistem konversi memiliki tantangan khususnya pada perancangan antarmuka menu input data KHS yang harus mudah digunakan dan memastikan semua data benar sesuai dengan KHS. Berdasarkan hasil yang diperoleh dari pengujian basic path testing menghasilkan 48 fungsi masuk dengan kategori tingkat risiko rendah terhadap cacat atau error yang memiliki tipe prosedur yang sederhana dan terstruktur dengan baik serta stabil dengan persentase 100%. Persentase dari pengujian yang dapat dilakukan sejumlah 89 pengujian berdasarkan jalur independen adalah sebesar 100%. Dari total 48 fungsi diperoleh hasil yang sama untuk 1 jenis perhitungan menggunakan cyclomatic complexity sehingga bisa dikatakan kode program adalah relevan serta dari 89 skenario uji diperoleh hasil yang valid tanpa eror. Sedangkan berdasarkan hasil ini maka dapat disimpulkan bahwa sistem konversi yang dibangun pada penelitian ini telah memiliki nilai usability yang sangat baik. AbstractOne of the academic requirements to graduate from a bachelor's program is to have completed 144. The problem is when a transcript is printed, the courses that appear are often double. Other conditions that often occur are the number of credits that are less than those recorded by students and differences in course names. This is very likely to occur due to curriculum changes that occur periodically in a study program. Based on this, this research was made to build a course conversion system using a structured approach with the waterfall method. The development of the conversion system has challenges, especially in designing the KHS data input menu interface which must be easy to use and ensure that all data is correct in accordance with KHS. Based on the results obtained from basic path testing, 48 functions are included in the category of low risk level for defects or errors that have a simple and well structured and stable type of procedure with a percentage of 100%. The percentage of tests that can be carried out by 89 tests based on the independent path is 100%. From a total of 48 functions, the same results are obtained for 1 type of calculation using cyclomatic complexity, it can be said that the script code program is relevant and from 89 test scenarios, valid results are obtained without errors. Meanwhile, based on these results, it can be concluded that the conversion system built in this study has a very good usability value.
Aplikasi Penjadwalan Daftar Jaga Perawat Dengan Menerapkan Algoritma Genetika : (Studi Kasus RSIA Muhammadiyah Probolinggo) Ika Nur Habibah; Fawwaz Ali Akbar; Made Hanindia Prami Swari
Jurnal Ilmiah Teknik Informatika dan Komunikasi Vol. 5 No. 2 (2025): Juli: Jurnal Ilmiah Teknik Informatika dan Komunikasi
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juitik.v5i2.1126

Abstract

A web-based nurse scheduling application utilizing a genetic algorithm is designed to optimize the arrangement of nurses’ work schedules in hospitals, which is often a challenge due to the need to consider various critical factors. The purpose of developing this application is to assist head nurses in efficiently creating nurse work schedules, while considering shift distribution, weekly working hour limits, provision of two days off per week, and the prohibition of assigning a night shift followed directly by a morning shift to ensure sufficient rest for nurses. This application is built using the CodeIgniter 3 framework, PHP programming language, and MySQL database. By leveraging the genetic algorithm, the system can automatically find the best schedule combinations and reduce violations of nurse scheduling rules. Test results show that the application can automatically generate schedules that comply with hospital regulations and requirements, and significantly accelerate the scheduling process compared to manual methods. Furthermore, the fitness value and schedule generation time produced are influenced by parameters such as population size, number of generations, mutation rate, and tournament size used.
Implication of ICWFPSO as Optimization Neural Network Algorithm on Sales Forecasting System Swari, Made Hanindia Prami; Rizki, Agung Mustika; Satwika, I Kadek Susila; Handika, I Putu Susila
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.3134

Abstract

Predictive systems play a crucial role in a company's operations and strategy by aiding in more informed and data-driven decision-making and more effective planning and budgeting. It is possible to develop an intelligent system to perform forecasting. Neural networks offer significant advantages in forecasting systems due to their flexible modeling capabilities. However, this algorithm's fundamental weakness is the slow convergence rate and being trapped in a local minimum. To overcome it, this research is conducted to optimize the NN algorithm using the ICWFPSO to produce a forecasting algorithm with high accuracy and faster execution time using real e-commerce sales data for the past 7 years.  Algorithm performance testing tests the Mean Absolute Error (MAE) value of the forecasting system using three scenarios: the NN forecasting algorithm, the NN optimized with ICWFPSO on the weight value, and the same scheme. Still, the optimized value is the hyperparameter value.  ICWPSO has been shown to enhance the performance of PSO by tuning the inertia weight dynamically, which helps balance exploration and exploitation during the optimization process. The best prediction result is obtained when optimizing the hyperparameters using the ICWFPSO optimization technique compared to using traditional NN or optimizing weight value with ICWFPSO with the MAE value of 245.32958984375, and the best performance is obtained at iterations below 100. Further, gradient-based optimization methods might be generally preferred for their efficiency and effectiveness in handling large-scale neural network training.
Co-Authors Agung Mustika Rizki Agung Mustika Rizki, Agung Mustika Aileena Solicitor Costa Rica El Chidtian Akbar, Fawwaz Ali Andreas Nugroho Sihananto Andreas Nugroho Sihanto Anggraini Puspita Sari Ani Dijah Rahajoe Arifan, Miftakhul Askara Raditya Aurora Prameswaty, Almira Azhari SN Basuki Rahmat Damayanti, Alfina Diyasa, I Gede Susrama Mas Dwi Wahyuningtyas Eva Yulia Puspaningrum Faisal Muttaqin Faisal Muttaqin Fetty Tri Anggraeny Firmansyah Firdaus Anhar Firza Prima Aditiawan Gilang Gema Ramadhan Handika, I Putu Susila Henni Endah Wahanani Hindrayani, Kartika Maulida Hutagaol, LeonHoss I Gede Winaya I Gusti Ngurah Agung Mahendra I Kadek Susila Satwika I Kadek Susila Satwika I Nyoman Sujana I Putu Susila Handika I Putu Susila Handika I WAYAN SUDIARSA Ika Nur Habibah Jannatul Firdaus Joni Bastian Joni Bastian Julastri, Bregsi Atingsari Kevin Santosa, Mochammad Lintang Perdana Rochmat Sugiharto Mandyartha, Eka Prakarsa Martoni Martoni Maulana, Hendra Muhammad Farhan Maulana Muhammad Hakam Fardana Muhammad Rifki Bahrul Ulum Muhammad Syafril Hidayat Muttaqin, Faisal Muttaqin, Faisal Nabila Rizky Amali Putri Ngurah Agus Sanjaya ER Nine Alvariqati Varqa Ansori Nugroho Sihananto, Anderas Permana, Eriko Indra Phitria, Shaum Pratama Wirya Atmaja Pratiwi, Nisa Prismahardi Aji Riyantoko Putra, Chrystia Aji Rabbani, Rafi Rahel Widya Arianti Rahel Widya Arianti Rahmadsyach, Mochammad Taufiq Retno Mumpuni Risnaldy Novendra Irawan Satria, Vinza Hedi Satwika, I Kadek Susila Sugiarto Sukandar, Ivan Christopher Syaifullah Jauharis Saputra, Wahyu Tasya Ardhian Nisaa' Tentra Olivia Tresna Maulana Fahrudin Tresna Maulana Fahrudin Ulummuddin, Ikhya Wahyu Syaifullah Jauharis Saputra Wariyanti Nugroho Putri Wayan Gede Suka Parwita Welda Wirya Atmaja, Pratama Yuniar Purbasari, Intan