p-Index From 2020 - 2025
13.347
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan EKSAKTA: Journal of Sciences and Data Analysis JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

Evaluation of Accreditation and National Examination using Multilevel Generalized Structured Component Analysis Budi Susetyo; Anwar Fitrianto
Jurnal Pendidikan Progresif Vol 12, No 1 (2022): Jurnal Pendidikan Progresif
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Evaluation of Accreditation and National Examination using Multilevel Generalized Structured Component Analysis. Hierarchical elements or higher levels often influence school accreditation and the national exam because education units are nested in the characteristics of the province. Objectives: This study aims to evaluate the relationship between accreditation and the national exam at the level of Junior high school/Madrasa in Java which are nested in province. Methods: The analysis employs multilevel GSCA analysis (MGSCA). Findings: UNBK has good convergent validity and it can explain each of the subjects tested in each province up to more than 90%. Concerning the estimates of path coefficients,  the study found eight patterns of relationship between SNP and UNBK that have a significant effect in the six provinces. Conclusion: The relationship between content and competency standard for UNBK shows that there are significant differences in all provinces in Java island. This shows that provincial characteristics affect school quality. The model can explain the total variability of all variables is 72.44%. Keywords: multilevel generalized structured component analysis, national education standards, national examination.DOI: http://dx.doi.org/10.23960/jpp.v12.i1.202223
Comparison between Statistical Approaches and Data Mining Algorithms for Outlier Detection Annisa Putri Utami; Anwar Fitrianto; Khairil Anwar Notodiputro
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 9, No 1 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v9i1.25450

Abstract

Outliers are observation values that are very different from most observations. The presence of outliers in data can have a negative impact on research but can contain important information for other research. So, identifying outliers before conducting data analysis is a crucial thing to do. Outlier detection methods/techniques were first pioneered by researchers in statistics. However, due to rapid technological advances which have an impact on the ease of collecting extensive data, the development of outlier detection techniques is now handled mainly by researchers in the field of computer science (data mining) using computing facilities. This research aims to examine the results of simulation studies by comparing methods for identifying several outliers using statistical approaches and data mining algorithm approaches in various predetermined data scenarios. Based on the scenario carried out, the outlier detection method using a statistical approach is generally better than the outlier detection method using a data mining-based approach. Suggestions for further research are to improve the data mining method by focusing more on statistical analysis apart from focusing on data processing computing time so that the expected results of outlier detection are faster and more precise.
Comparing Outlier Detection Methods: An Application on Indonesian Air Quality Data Anwar Fitrianto; Amalia Kholifatunnisa; Anang Kurnia
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 9, No 2 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v9i2.29434

Abstract

There are many methods for detecting outliers, but only a few methods consider data distribution. This research compares outlier detection method on univariate data with a skewed distribution. Outlier detection methods used in this research are Tukey's boxplot, adjusted boxplot, sequential fences, and adjusted sequential fences. It identifies areas of concern due to poor air quality during the Implementation of Micro-Community Activity Restrictions. The study used Indonesian air quality index data.The adjusted boxplot method performs best based on the number of outliers detected, error rate, accuracy, precision, specificity, sensitivity, and robustness. Adjusted boxplot and adjusted sequential fences can detect tails that contain outliers accurately because the skewness coefficient makes them more robust. Meanwhile, Tukey's boxplot and sequential fences are poor methods since they couldn’t detect correctly true outliers. Based on the results, adjusted boxplot is the best method. Then, areas that need attention due to poor air quality include South Sumatera, South Sulawesi, West Java, Riau, North Sumatera, Jambi, Jakarta, and East Java.
Simulation Study for Parametric EWMA and NPWEWPA-SR Control Charts Against Non-Normality Assumptions Anwar Fitrianto; Lai Ming Choon; Wan Zuki Azman Wan Muhamad
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 8, No 2 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v8i2.23315

Abstract

Common control chart types such as EWMA require assumptions to have valid information.  The study compares IC robustness and OOC performance for parametric EWMA and NPEWMA-SR control charts in violation of symmetrical assumption. The Monte Carlo simulation study held scale parameters with various shape parameters in Weibull distribution. First finding in this paper was both parametric EWMA and NPEWMA-SR control charts were not suitable for the application in asymmetrical distribution due to weak IC robustness and frequent false alarm will be occurred. Although EWMA-X ̅ The control chart showed a most stable OOC performance; the weak IC robustness made the control chart unacceptable. Whereas, NPEWMA-SR control chart lost the ability in small shift detection when symmetrical assumption violated. Moreover, two different weightage of current sample for both parametric EWMA and NPEWMA-SR control charts were also investigated. The results showed that weightage of current sample for both parametric EWMA and NPEWMA-SR control charts did not affect the ARL value trend in different skewness of Weibull distribution.
Estimating Missing Panel Data with Regression and Multivariate Imputation by Chained Equations (MICE) Budi Susetyo; Anwar Fitrianto
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 9, No 1 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v9i1.24824

Abstract

Missing data may occur in various types of research. Regression and multiple imputation by chained equations (MICE) are two methods that can be used to estimate missing data in panel data types. This study aims to compare the accuracy of the missing panel data estimation using the regression and the MICE methods. The data used in this study are 161 random samples of senior high schools and vocational schools in DKI province for the year 2016-2020. Based on the results of the Chow test, Hausman test, and Lagrange Multiplier test on panel data regression, it shows that the appropriate model for the student-teacher ratio (X5) is random, the percentage of teachers who have an educator certificate (X6) is a fixed model with the specific effect of individual school and time, while the percentage of teachers who hold a bachelor degree (X7) is a fixed model with the specific effect of individual. Based on this model, the estimation of missing data is then carried out. The accuracy of the missing data estimation was carried out by comparing the MAPE, MAE, and RMSE values. The results show that the MICE method is quite good for estimating missing data at X5, quite feasible for estimating X6, and very good for estimating missing data at X7. In general, MICE is more accurate than panel data regression
The Influence of Women’s Empowerment on The Preference for Contraceptive Methods in Indonesia: A Multinomial Logistic Regression Modelling Tahira Fulazzaky; Indahwati Indahwati; Anwar Fitrianto; Erfiani Erfiani; Khusnia Nurul Khikmah
JURNAL INFO KESEHATAN Vol 22 No 3 (2024): JURNAL INFO KESEHATAN
Publisher : Research and Community Service Unit, Politeknik Kesehatan Kemenkes Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31965/infokes.Vol22.Iss3.1213

Abstract

The concept of women's empowerment encompasses enabling women to take control of their own lives, independently make choices, and fulfill their complete capabilities. Numerous research studies examined the correlation between the empowerment of women and their reproductive health. In Indonesia, female labor force participation is relatively low. As a result, research on the influence of empowering women on contraceptive method preference in Indonesia makes sense. This research aims to find the multinomial logistic regression model in choosing contraceptive methods for married women in Indonesia and to identify the women’s empowerment traits that most impact contraceptive method choice.  For this study, the researchers utilized secondary data obtained from the 2017 Indonesian Demographic and Health Survey (IDHS). The participants consisted of women between the ages of 15 and 49 who were married. The total number of respondents sampled was 49,216. Variables that significantly affect contraceptive method use include the respondent's current employment, the respondent has bank account or other financial institution accounts, the cumulative count of offspring previously born and beating justified if the wife argues with her husband. The analysis is obtained using the multinomial logistic regression test, independency, multicollinearity, and parameter test, and the selection is made by considering either the smallest value of Akaike's information criterion or the option that achieves the highest level of accuracy. Findings highlight four significant variables: Firstly, employed women are more likely to use contraceptives than the unemployed. Secondly, access to banking services correlates with a higher likelihood of contraceptive use. Thirdly, women with more children tend to prefer long-acting reversible contraceptives. Lastly, endorsement of spousal violence justifiability is linked to conventional contraceptive selection. These results emphasize the roles of employment, financial access, family size, and gender-based violence perceptions in shaping contraceptive choices in Indonesia. Model 3 emerges as the most accurate predictor of preferences after eliminating six variables based on rigorous testing and multicollinearity considerations. These findings underscore the importance of addressing economic empowerment and gender-related issues in Indonesian reproductive health programs and policies. Such a comprehensive approach can enhance women's autonomy, enabling them to make crucial life choices and ultimately improving their overall well-being.         
Analisis Regresi Logistik Biner dan Random Forest untuk Prediksi Faktor-Faktor Stunting di Pulau Jawa Yuniarsyih R.A, Rizqi Dwi; Muhadi, Rizqi Annafi; Fitrianto, Anwar; Silvianti, Pika
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi Volume 13 Issue 2 August 2025
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/euler.v13i2.31680

Abstract

This study aimed to compare the performance and variable identification capabilities of Binary Logistic Regression and Random Forest models in classification analysis. The results showed that both methods consistently identified variables X1, X3, and X4 as the most influential factors in predicting outcomes. However, Binary Logistic Regression also identified variable X6 as statistically significant, which was not reflected in the Random Forest model. In terms of model performance, Random Forest outperformed Binary Logistic Regression across all evaluation metrics, including accuracy, precision, sensitivity, specificity, and balanced accuracy. These findings suggested that Random Forest was more effective in handling complex data structures and delivering optimal classification results, while Binary Logistic Regression excelled in providing deeper interpretability of variable relationships. Therefore, the choice of method should have aligned with the analytical objectives, and combining both approaches could have yielded more comprehensive insights.
Comparison of GMERF and GLMM Tree Models on Poverty Household Data with Imbalanced Categories Bukhari, Ari Shobri; Notodiputro, Khairil Anwar; Indahwati, Indahwati; Fitrianto, Anwar
Inferensi Vol 8, No 2 (2025)
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v8i2.21901

Abstract

Decision tree and forest methods have become popular approaches in data science and continue to evolve. One of these developments is the combination of decision trees with Generalized Linear Mixed Models (GLMM), resulting in the GLMM Tree, which is applicable to multilevel and longitudinal data. Another model, Generalized Mixed Effect Random Forest (GMERF), extends the concept of decision forests with GLMM, effectively handling complex data structures with non-linear interactions. This study compares the performance of GLMM Tree and GMERF models in classifying poor households in South Sulawesi Province, characterized by imbalanced categories. GLMM Tree provides a simple, interpretable classification through tree diagrams, while GMERF highlights variable importance. Initial tests show all three models (GLMM, GLMM Tree, and GMERF) achieve high accuracy and specificity but exhibit low sensitivity. By applying oversampling, sensitivity and AUC are significantly improved, though this is accompanied by a decline in accuracy and specificity, revealing a trade-off. The study concludes that while GLMM, GLMM Tree and GMERF have their strengths, using them together offers a more comprehensive understanding of poverty classification. Handling imbalanced data with oversampling is effective in increasing sensitivity, but careful consideration is needed due to its impact on overall accuracy.
Perbandingan Metode K-Means dan OPTICS dalam Penggerombolan Kemiskinan Multidimensi di Indonesia Sari, Devi Permata; Rizqi, Tasya Anisah; Fitrianto, Anwar; M.S, Erfiani; Jumansyah, L.M. Risman Dwi
KUBIK Vol 9 No 2 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i2.39877

Abstract

Kemiskinan multidimensi tetap menjadi tantangan serius di Indonesia meskipun telah mengalami penurunan dalam beberapa tahun terakhir. Penelitian ini bertujuan menganalisis dan membandingkan pola kemiskinan multidimensi di 34 provinsi Indonesia menggunakan metode K-Means dan OPTICS Clustering. Data kemiskinan multidimensi yang digunakan mencakup aspek ekonomi, pendidikan, ketenagakerjaan, dan standar hidup dari Badan Pusat Statistik. Analisis statistik deskriptif mengungkapkan kesenjangan signifikan antar provinsi dalam berbagai dimensi kemiskinan, dengan korelasi tertinggi sebesar 0,4 antara dimensi pendidikan dan status ketenagakerjaan. K-Means Clustering mengidentifikasi 5 cluster provinsi dengan karakteristik beragam, menunjukkan adanya trade-off antara akses fasilitas dan tingkat kemiskinan. Sementara itu, OPTICS Clustering menghasilkan 2 cluster utama, dengan cluster 1 terdiri dari 24 provinsi yang memiliki kondisi cenderung homogen dan cluster 2 terdiri dari 7 provinsi dengan karakteristik yang berbeda secara signifikan. Perbandingan performa menunjukkan OPTICS unggul dengan nilai Silhouette Index dan WCSS yang lebih baik dibandingkan K-Means. Temuan ini memberikan kontribusi penting dalam analisis kemiskinan multidimensi di Indonesia dan dapat dimanfaatkan untuk merancang program pengentasan kemiskinan yang lebih terlokalisasi sesuai karakteristik masing-masing cluster.
Perbandingan Metode K-Means dan OPTICS dalam Penggerombolan Kemiskinan Multidimensi di Indonesia Sari, Devi Permata; Rizqi, Tasya Anisah; Fitrianto, Anwar; M.S, Erfiani; Jumansyah, L.M. Risman Dwi
KUBIK Vol 9 No 2 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i2.39877

Abstract

Kemiskinan multidimensi tetap menjadi tantangan serius di Indonesia meskipun telah mengalami penurunan dalam beberapa tahun terakhir. Penelitian ini bertujuan menganalisis dan membandingkan pola kemiskinan multidimensi di 34 provinsi Indonesia menggunakan metode K-Means dan OPTICS Clustering. Data kemiskinan multidimensi yang digunakan mencakup aspek ekonomi, pendidikan, ketenagakerjaan, dan standar hidup dari Badan Pusat Statistik. Analisis statistik deskriptif mengungkapkan kesenjangan signifikan antar provinsi dalam berbagai dimensi kemiskinan, dengan korelasi tertinggi sebesar 0,4 antara dimensi pendidikan dan status ketenagakerjaan. K-Means Clustering mengidentifikasi 5 cluster provinsi dengan karakteristik beragam, menunjukkan adanya trade-off antara akses fasilitas dan tingkat kemiskinan. Sementara itu, OPTICS Clustering menghasilkan 2 cluster utama, dengan cluster 1 terdiri dari 24 provinsi yang memiliki kondisi cenderung homogen dan cluster 2 terdiri dari 7 provinsi dengan karakteristik yang berbeda secara signifikan. Perbandingan performa menunjukkan OPTICS unggul dengan nilai Silhouette Index dan WCSS yang lebih baik dibandingkan K-Means. Temuan ini memberikan kontribusi penting dalam analisis kemiskinan multidimensi di Indonesia dan dapat dimanfaatkan untuk merancang program pengentasan kemiskinan yang lebih terlokalisasi sesuai karakteristik masing-masing cluster.
Co-Authors -, Salsabila A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Anik Djuraidah Anisa Nurizki Annisa Putri Utami Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Budi Susetyo Budi Susetyo Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fajar Athallah Yusuf Farit M Affendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Lai Ming Choon Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Marshelle, Sean Megawati Megawati Mohamad Solehudin Zaenal Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Farhan Zahid Muhammad Irfan Hanifiandi Kurnia mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nafisa Berliana Indah Pratiwi Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah Pangestika, Dhita Elsha Pika Silvianti Pika Silvianti Pradnya Sri Rahayu Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Oktaviani Aisyah Rachmat Bintang Yudhianto Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tahira Fulazzaky Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yuniarsyih R.A, Rizqi Dwi Zein Rizky Santoso