p-Index From 2021 - 2026
13.55
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan EKSAKTA: Journal of Sciences and Data Analysis JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Journal of Information System, Applied, Management, Accounting and Research Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

Analisis Pola Konvergensi Transpor Kelembapan Udara di Indonesia Bagian Barat Menggunakan K-Means dengan Pembobotan Statistik dan Hierarchical Shape-Based Clustering Pratiwi, Asri; Azis, Tukhfatur Rizmah; Fitrianto, Anwar; Erfiani, Erfiani; Jumansyah, L.M. Risman Dwi
KUBIK Vol 9 No 2 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i2.39753

Abstract

This study analyzes the convergence patterns of Vertically Integrated Moisture Transport (VIMT) in the western region of Indonesia using the K-Means method with statistical weighting and Hierarchical Shape-Based Clustering based on Dynamic Time Warping (DTW). Daily data on specific humidity, zonal wind speed, and meridional wind speed from 2020–2023 were used to calculate VIMT. Clustering methods were utilized to identify grouping patterns in moisture transport data. The results showed that moisture convergence significantly increased during the rainy season (November–February). Using the K-Means method, five clusters with clearer separations were obtained compared to the four clusters produced by the Hierarchical Clustering method. Performance evaluation using Silhouette and Calinski-Harabasz scores indicated that the K-Means method was superior, with scores of 0.37 and 104.88 compared to 0.13 and 96.34 for the Hierarchical method. This provides an understanding of the moisture transport patterns, serving as a reference for predicting weather and climate patterns, thereby supporting efforts to mitigate the impacts of extreme weather in Western Indonesia.
Image Classification of Rice Leaf Diseases with KNN Based Model using Stratified-KCV Rizqi, Tasya Anisah; Anwar Fitrianto; Kusman Sadik
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 5 (2025): October 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i5.6590

Abstract

Rice is a staple food for people in the world, especially Indonesia. The rice harvest decreased in 2023, reducing harvest productivity and causing losses for farmers. Rice cultivation is often affected by diseases that hinder rice harvests. SKCV is a resampling method that performs more accurately because it can ensure that class frequencies are maintained. RGB and VGG16 are image processing methods that extract images into numerics. RGB image extraction is done by taking the average value of the red, green, and blue layers while VGG16 image extraction is done by taking the value of visual pattern features such as edges, textures, and object shapes. In this study, rice leaf diseases were classified using KNN-based models, including KNN, WKNN, CDNN, and ECDNN. This classification was performed to determine which method had better performance using SKCV and comparing the results of RGB and VGG16 image extraction. This classification also produces a comparison of SKCV and KCV results to determine the best resampling performance. The results of the analysis that have been carried out show that the ECDNN method produces the highest accuracy of 81.20% in classifying rice leaf diseases using SKCV with VGG16 extraction followed by CDNN and WKNN each at 68.80%, and KNN at 56.20% while RGB extraction only produces an accuracy of 43.8% using ECDNN and CDNN, 56.20% using WKNN, and 50% using KNN. The results of this rice leaf diseases classification analysis are expected to help farmers in increasing rice production in Indonesia.
Optimasi Hyperparameter Model Klasifikasi Citra untuk Daging Sapi dan Babi Menggunakan Convolutional Neural Networks -, Salsabila; Anwar Fitrianto; Bagus Sartono
EKSAKTA: Journal of Sciences and Data Analysis VOLUME 6, ISSUE 2, October 2025
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/EKSAKTA.vol6.iss2.art6

Abstract

Deep learning classification network in one case, has different classification capabilities than the network in another. The classification method of deep learning using CNN has specific hyperparameters that can be adjusted to have good performance. These hyperparameters include the number of convolutional layers, the number of neurons in the convolutional and fully connected layers, kernel size, and activation functions. Deep Learning uses experimental principles in finding the best hyperparameter in various cases. The model architecture can be determined by choosing a different design. This research uses pork and beef images as the data for classification using CNN. The abstract textures of beef and pork may make it difficult for the CNN classification model to distinguish between them. Hence, 32 combinations of five hyperparameters were compared. It was found that these hyperparameters affect the model's performance. The best model has obtained 98,7% accuracy that uses 20 neurons both layers of the convolution was, kernel size of 5 × 5, ReLU activation function, and two fully connected layers with dropout 0.7 as a method of overfitting prevention. A significant difference also occurs in the application of the activation function, in which ReLU has a better performance than tanh function to increase the model's prediction.
Analisis Ridge Robust Penduga Generalized M (GM) Pada Pemodelan Kalibrasi Untuk Kadar Gula Darah Agung Tri Utomo; Erfiani, Erfiani; Fitrianto, Anwar
VARIANSI: Journal of Statistics and Its application on Teaching and Research Vol. 4 No. 2 (2022)
Publisher : Program Studi Statistika Fakultas MIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.666 KB) | DOI: 10.35580/variansiunm14

Abstract

Calibration modeling is one of the methods used to analyze the relationship between different methods. The relationship is like the relationship between invasive and non-invasive blood sugar measurement. Problems that often arise in calibration modeling are multicollinearity and outliers. Multicollinearity problems can cause the regression confidence interval to widen, so that there is no statistically significant regression coefficient. Outliers cause statistical tests to deviate. The handling of these problems can be solved by robust ridge analysis. Ridge robust is a combined analysis of ridge regression and robust regression. Ridge regression is able to overcome the problem of multicollinearity and robust regression can overcome the problem of outliers. The estimator used is Generalized M (GM). This method will be applied to a calibration model that uses invasive and non-invasive blood sugar level data. The model used with Generalized M (GM) estimator robust regression using modulation clusters 50 to 90 in 2017 is better than the modulation group 50. up to 90 in 2019. The statistical values obtained are SSE of 0.910, RMSEadj of 0.114, and RMSEP of 0.030. Calibration models that have outliers and multicollinearity problems can be overcome by robust ridge regression. The feasibility value of the model obtained in the GM estimator robust regression is smaller than the MM estimator ridge robust regression in the calibration modeling for non-invasive blood sugar level data. That is, the best model that can be used is the robust ridge regression GM estimator.
Analisis Visual dan Karakteristik Klub Sepakbola Liga Inggris Berdasarkan Pola Permainan Menggunakan K-Means Clustering Yudhianto, Rachmat Bintang; Yusuf, Fajar Athallah; Fitrianto, Anwar; Jumansyah, L.M. Risman Dwi
Jurnal Informatika Universitas Pamulang Vol 9 No 3 (2024): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v9i3.44640

Abstract

This research aimed to analyze and cluster football teams in the English Premier League (EPL) for the 2023/2024 season based on their playing characteristics using K-Means clustering. Understanding the playing styles is essential for optimizing strategies and enhancing team performance. Preprocessing steps included data cleaning, feature engineering, and visualization of key features such as goals, shots, and attacking attempts. Four clusters were identified using the Elbow method, representing teams with varying levels of attacking and defensive capabilities. Evaluation of the clustering results was conducted using Davies-Bouldin (score: 0.47), Calinski-Harabasz (score: 275.89), and Silhouette (score: 0.53) metrics, indicating moderate clustering quality. The findings suggest that EPL teams tend to be attack-oriented, while defensive strength varies across clusters. Limitations in the dataset, such as the number of observations and features, impacted the analysis, and future studies may benefit from incorporating additional features and advanced dimensionality reduction techniques.
Village Potential Mapping: Comprehensive Cluster Analysis of Continuous and Categorical Variables with Missing Values and Outliers Dataset in Bogor, West Java, Indonesia Pratiwi, Nafisa Berliana Indah; Indahwati; Anwar Fitrianto
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.3903

Abstract

Purpose: This research emphasizes the need to map villages' conditions and identify village potentials, evaluate the effectiveness of development capability, and address the rural-urban development gap with clustering algorithms. The study employs the village development index (IPD) indicators obtained from the village potential dataset, with various numerical and categorical indicators, to capture both tangible and intangible aspects of village potential. Challenges such as missing data and outliers in IPD data collection can be found. The study aims to evaluate the effectiveness of clustering algorithms, with integrated and separated imputation processes, in handling these data issues and to track the development of villages in the Bogor Regency, West Java, Indonesia, based on the village’s potential (PODES) dataset. Methods: Three clustering algorithms, such as k-prototype, simple k-medoids, and Clustering of Mixed Numerical and Categorical Data with Missing Values (k-CMM) are compared. The pre-processing data, which is the imputation process for the first two algorithms, is conducted separately, while the k-CMM has an integrated imputation process. Both imputation stages are tree-based algorithms. Cluster evaluation is based on internal criteria and external criteria. Clusters resulting from the k-prototype and simple k-medoids are selected by internal validity indices and compared to k-CMM using external validity indices for several numbers of clusters (k = 3,4,5). Result: According to data exploration, the IPD of Bogor Regency, West Java, Indonesia dataset contains ± 5% of outliers and six missing values in some chosen variables. Tree-based imputation methods are applied separately in k-prototype and simple k-medoids, jointly in k-CMM. Based on the elbow and gap statistics methods, this research aims to determine the optimum number of clusters k = 3. The internal validity indices performed on k-prototype and simple k-medoids resulting in three clusters (k = 3) are optimum. Trials on several clusters (k = 3,4,5) for three algorithms show that the k-prototype with k = 3 performs the best and is most stable among the two other algorithms with IPD datasets containing many outliers; external validity indices evaluate cluster results. Novelty: This research addresses issues commonly found in mixed datasets, including outliers and missing values, and how to treat problems before and during cluster analysis. An improvement of Gower distance is applied in the medoid-based clustering algorithm, and the k-CMM algorithm is the first algorithm to integrate the imputation process and clustering analysis, which is interesting to explore this algorithm’s performance in clustering analysis.
Performance of Ensemble Learning in Diabetic Retinopathy Disease Classification Nurizki, Anisa; Fitrianto, Anwar; Mohamad Soleh, Agus
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.4725

Abstract

Purpose: This study explores diabetic retinopathy (DR), a complication of diabetes leading to blindness, emphasizing early diagnostic interventions. Leveraging Macular OCT scan data, it aims to optimize prevention strategies through tree-based ensemble learning. Methods: Data from RSKM Eye Center Padang (October-December 2022) were categorized into four scenarios based on physician certificates: Negative & non-diagnostic DR versus Positive DR, Negative versus Positive DR, Non-Diagnosis versus Positive DR, and Negative DR versus non-Diagnosis versus Positive DR. The suitability of each scenario for ensemble learning was assessed. Class imbalance was addressed with SMOTE, while potential underfitting in random forest models was investigated. Models (RF, ET, XGBoost, DRF) were compared based on accuracy, precision, recall, and speed. Results: Tree-based ensemble learning effectively classifies DR, with RF performing exceptionally well (80% recall, 78.15% precision). ET demonstrates superior speed. Scenario III, encompassing positive and undiagnosed DR, emerges as optimal, with the highest recall and precision values. These findings underscore the practical utility of tree-based ensemble learning in DR classification, notably in Scenario III. Novelty: This research distinguishes itself with its unique approach to validating tree-based ensemble learning for DR classification. This validation was accomplished using Macular OCT data and physician certificates, with ETDRS scores demonstrating promising classification capabilities.
Comparison of Extremely Randomized Survival Trees and Random Survival Forests: A Simulation Study Zaenal, Mohamad Solehudin; Fitrianto, Anwar; Wijayanto, Hari
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.8464

Abstract

Abstract. Purpose: This simulation study investigates the Extremely Randomized Survival Trees (EST) model, a machine learning technique expected to handle survival analysis, particularly in large survival datasets, effectively. The study compares the performance of the EST model with that of the Random Survival Forest (RSF) model, focusing on the C-index value to determine which model performs better. Methods: The analysis begins with the generation of 540 simulated datasets, created by combining three levels of sample sizes, two levels of censoring proportions, three types of hazard functions, and 30 repetitions for each scenario. The simulation data were split into 80% training and 20% testing data. The training data were used to build the EST and RSF models, while the test data were used to evaluate their performance. The model with the highest C-index value was deemed the best performer, as a higher C-index indicates superior model performance. Result: The results indicate that the sample size, type of hazard function, and the method used influence that model performance. The EST model significantly outperformed the RSF model when the sample size was large, though no significant difference was observed when the sample size was small or medium. Additionally, the EST model consistently demonstrated faster computation times across all simulation scenarios. Novelty: This study provides a pioneering exploration into applying decision tree algorithms, specifically EST and RSF, in survival analysis. While these methods have been extensively studied in regression and classification contexts, their application in survival analysis remains relatively unexplored.
Rice Price Forecasting for All Provinces in Indonesia Using The Time Series Clustering Approach and Ensemble Empirical Mode Decomposition Ilmani, Erdanisa Aghnia; Sumertajaya, I Made; Fitrianto, Anwar
Scientific Journal of Informatics Vol. 12 No. 1: February 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i1.23536

Abstract

Purpose: Accurate forecasting of rice prices is essential to ensure food security and a healthy economy for a country like Indonesia. Problems regarding time-series phenomena, such as trends or seasonality, are problematic for traditional approaches like ARIMA (Autoregressive Integrated Moving Average). This study analyzes the effect of EEMD (Ensemble Empirical Mode Decomposition) combined with time-series data clustering on forecasting accuracy. Methods: From 2009 until 2023, the thirty-two Indonesian provincial rice prices were grouped monthly into time-series clusters using hierarchical clustering, average linkage, and DTW (Dynamic Time Warping). After clusterization, the time series were decomposed using the ensemble EEMD method to extract their IMFs (Intrinsic Mode Functions) and residual components. Each IMF was assigned an ARIMA model. The model forecast was generated by adding all individual estimates. MAPE (Mean Absolute Percentage Error) was used to measure the model's performance. Result: The prices were divided into three clusters with an optimized region. Price changes are well captured through EEMD, where the residual components contributed predominantly to the long-term trends. The validation of the prediction showed MAPE values under 10% for the majority of the provinces, which indicates a relatively accurate prediction. On the other hand, some regions had inaccuracies that were higher than others due to uncontrollable fluctuations. Novelty: This study integrates clustering with EEMD decomposition for monthly rice price forecasting using data from 32 Indonesian provinces from 2009 - 2023, offering a novel approach that improves traditional techniques. The model can capture distinct regional price patterns and provide essential information to policymakers to manage rice supply and price stabilization. Further studies can develop external hybrid models with economic variables.
Evaluation of Accreditation and National Examination using Multilevel Generalized Structured Component Analysis Susetyo, Budi; Fitrianto, Anwar
Jurnal Pendidikan Progresif Vol 12, No 1 (2022): Jurnal Pendidikan Progresif
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Evaluation of Accreditation and National Examination using Multilevel Generalized Structured Component Analysis. Hierarchical elements or higher levels often influence school accreditation and the national exam because education units are nested in the characteristics of the province. Objectives: This study aims to evaluate the relationship between accreditation and the national exam at the level of Junior high school/Madrasa in Java which are nested in province. Methods: The analysis employs multilevel GSCA analysis (MGSCA). Findings: UNBK has good convergent validity and it can explain each of the subjects tested in each province up to more than 90%. Concerning the estimates of path coefficients,  the study found eight patterns of relationship between SNP and UNBK that have a significant effect in the six provinces. Conclusion: The relationship between content and competency standard for UNBK shows that there are significant differences in all provinces in Java island. This shows that provincial characteristics affect school quality. The model can explain the total variability of all variables is 72.44%. Keywords: multilevel generalized structured component analysis, national education standards, national examination.DOI: http://dx.doi.org/10.23960/jpp.v12.i1.202223
Co-Authors -, Salsabila A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Alifviansyah, Kevin Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Angelia, Riza Rahmah Anik Djuraidah Anisa Nurizki Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Askari, M. Aiman Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Choon, Lai Ming Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fahira, Fani Farit M Affendi Farit M. Afendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Ita Wulandari Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Kapiluka, Kristuisno Martsuyanto Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Manaf, Silmi Annisa Rizki Marshelle, Sean Megawati Megawati Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Irfan Hanifiandi Kurnia Muhammad Yusran mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah NURADILLA, SITI Nurizki, Anisa Pangestika, Dhita Elsha Pika Silvianti Pradnya Sri Rahayu Pratiwi, Nafisa Berliana Indah Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Mega Ramatika Putri, Oktaviani Aisyah Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Ramadhan, Syaifullah Yusuf Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Sari, Jefita Resti Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tangke, Nabillah Rahmatiah Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Utami, Annisa Putri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yudhianto, Rachmat Bintang Yuniarsyih R.A, Rizqi Dwi Yusuf, Fajar Athallah Zaenal, Mohamad Solehudin Zahid, Muhammad Farhan Zahra, Latifah Zein Rizky Santoso