p-Index From 2021 - 2026
5.397
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) International Journal of Informatics and Communication Technology (IJ-ICT) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) International Journal of Advances in Intelligent Informatics CESS (Journal of Computer Engineering, System and Science) Proceeding of the Electrical Engineering Computer Science and Informatics Sistemasi: Jurnal Sistem Informasi Jurnal Teknologi dan Sistem Komputer Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Knowledge Engineering and Data Science JIKO (Jurnal Informatika dan Komputer) International Journal of Computing and Informatics (IJCANDI) JURNAL REKAYASA TEKNOLOGI INFORMASI ILKOM Jurnal Ilmiah Prosiding SAKTI (Seminar Ilmu Komputer dan Teknologi Informasi) METIK JURNAL JISKa (Jurnal Informatika Sunan Kalijaga) Sains, Aplikasi, Komputasi dan Teknologi Informasi Indonesian Journal of Electrical Engineering and Computer Science JUKI : Jurnal Komputer dan Informatika Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences International Journal of Advanced Science and Computer Applications Adopsi Teknologi dan Sistem Informasi Bulletin of Social Informatics Theory and Application Periodicals of Occupational Safety and Health Pengabdian Kepada Masyarakat Bidang Teknologi dan Sistem Informasi The Indonesian Journal of Computer Science
Claim Missing Document
Check
Articles

Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Purnawansyah Purnawansyah; Aji Prasetya Wibawa; Triyanna Widyaningtyas; Haviluddin Haviluddin; Cholisah Erman Hasihi; Ming Foey Teng; Herdianti Darwis
ILKOM Jurnal Ilmiah Vol 15, No 2 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i2.1759.382-389

Abstract

Indonesia is a tropical country with a diverse range of plants that ancient people used for traditional medicines. However, the similarity in shape of the leaves became an obstacle to distinguishing them. Therefore, technological advancements are expected to help identify the herbal leaves to use them right on target according to their efficacy. In this research, image classification of katuk (Sauropus Androgynus) and kelor (Moringa Oleifera) leaves is applied using 3 different algorithms i.e hybrid of Gray Level Co-Occurrence Matrix (GLCM) feature extraction and Support Vector Machine (SVM) implementing 4 kernels namely linear, RBF, polynomial, and sigmoid; hybrid of GLCM and Convolutional Neural Network (CNN); and pure CNN. A dataset of 480 images has been collected with 2 different scenarios, including bright and dark intensities. Based on the result, a hybrid of GLCM and SVM showed the highest accuracy of 96% in the dark intensity test using a linear kernel, while sigmoid obtained the lowest accuracy of 35%. On the other hand, it has been discovered that CNN obtained the highest performance in the bright intensity test with an accuracy of 98%. While in the dark intensity test, a hybrid of GLCM and CNN is superior, obtaining 96% accuracy. In conclusion, CNN is more powerful for image classification with bright intensity. For dark intensity images, both the hybrid of GLCM+SVM (linear) and the hybrid of GLCM+CNN are fairly recommended.
Big data: issues trends problems controversies in ASEAN perspective Haviluddin, Haviluddin; Alfred, Rayner
Bulletin of Social Informatics Theory and Application Vol. 3 No. 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/businta.v3i2.239

Abstract

Big Data has a characteristics is size, new opportunities and have the potential to transform corporations and government and its interactions with the public. This paper attempts to offer a broader definition of Big Data that captures it is other unique and defining characteristics. This paper presents a consolidated description of Big Data by integrating definitions from practitioners and academics. In addition, we summarize the issues, trends, problems and controversies related to Big Data (technology, applications, and people) from infrastructure (i.e., hardware and software), technology for Big Data Analytics (BDA), management, educational and scientists, and government-related to policies perspectives in order to support the Economic Community ASEAN (AEC) era.
DIET Classifier Model Analysis for Words Prediction in Academic Chatbot Astuti, Wistiani; Wibawa, Aji Prasetya; Haviluddin, Haviluddin; Darwis, Herdianti
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1598.59-67

Abstract

One prevalent conversational system within the realm of natural language processing (NLP) is chatbots, designed to facilitate interactions between humans and machines. This study focuses on predicting frequently asked questions by students using the Duel Intent and Entity Transformer (DIET) Classifier method and assessing the performance of this method. The research involves employing 300 epochs with an 80% training data and 20% testing data split. In this study, the DIET Classifier adopts a multi-task transformer architecture to simultaneously handle classification and entity recognition tasks. Notably, it possesses the capability to integrate diverse word embeddings, such as BERT and GloVe, or pre-trained words from language models, and blend them with sparse words and n-gram character-level features in a plug-and-play manner. Throughout the training process of the DIET Classifier model, data loss and accuracy from both training and testing datasets are monitored at each epoch. The evaluation of the text classification model utilizes a confusion matrix. The accuracy results for testing the DIET Classifier method are presented through four case studies, each comprising 25 text messages and 15 corresponding chatbot responses. The obtained accuracy values range from 0.488 to 0.551, F1-Score values range from 0.427 to 0.463, and precision range from 0.417 to 0.457.
Implementasi Metode User Experience Questionnaire Pada Website Kepegawaian Universitas Mulawarman Ibrahim, Muhammad Rivani; Soepriyadi, Agus; Basuki, Nur Bambang; Sutikno, Sutikno; Haviluddin, Haviluddin; Widagdo, Putut Pamilih
Jurnal Rekayasa Teknologi Informasi (JURTI) Vol 8, No 1 (2024): Jurnal Rekayasa Teknologi Informasi (JURTI)
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jurti.v8i1.15772

Abstract

Website Kepegawaian Universitas Mulawarman (Unmul) merupakan salah satu sarana penting bagi para pegawai Unmul untuk mengakses informasi dan layanan kepegawaian. Untuk mengetahui efektivitas dan efisiensi website dalam memenuhi kebutuhan penggunanya, dilakukan evaluasi website menggunakan metode User Experience Questionnaire (UEQ). Penelitian ini melibatkan 50 pegawai Unmul yang dipilih secara acak. Data dikumpulkan melalui kuesioner UEQ yang terdiri dari 6 dimensi, yaitu: Kegunaan untuk Mengukur kemudahan penggunaan website, Keefektifan untuk Mengukur kemampuan website dalam membantu pengguna mencapai tujuan. Kepuasan untuk Mengukur tingkat kepuasan pengguna terhadap website. Kemampuan belajar untuk Mengukur kemudahan pengguna dalam mempelajari cara menggunakan website. Memorability untuk Mengukur kemampuan pengguna dalam mengingat cara menggunakan website. Kesalahan untuk Mengukur tingkat kesalahan yang dilakukan pengguna saat menggunakan website. Hasil penelitian menunjukkan bahwa website Kepegawaian Unmul memiliki skor UEQ yang cukup baik secara keseluruhan, dengan nilai tertinggi pada dimensi kegunaan dan nilai terendah pada dimensi kemampuan belajar. Hal ini menunjukkan bahwa website tersebut mudah digunakan dan membantu pengguna dalam mencapai tujuan, namun masih perlu ditingkatkan dalam hal kemudahan mempelajari cara penggunaannya. Berdasarkan hasil evaluasi, beberapa rekomendasi untuk meningkatkan website Kepegawaian Unmul diajukan, antara lain: Menyediakan panduan pengguna yang lebih lengkap dan mudah dipahami, Meningkatkan desain website agar lebih intuitif dan menarik, Melakukan pengujian usability secara berkala untuk mengidentifikasi dan memperbaiki masalah yang ada. Dengan menerapkan rekomendasi tersebut, diharapkan website Kepegawaian Unmul dapat menjadi lebih efektif dan efisien dalam memenuhi kebutuhan para penggunanya.
Automated water quality monitoring and regression-based forecasting system for aquaculture Wei, Toh Yin; Tindik, Emmanuel Steward; Fui, Ching Fui; Haviluddin, Haviluddin; Hijazi, Mohd Hanafi Ahmad
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4464

Abstract

Water quality in fish tanks is essential to reduce fish mortality. Many factors affect the water quality, such as pH, dissolved oxygen, and temperature in fish tanks. Existing work has presented water quality monitoring systems for aquaculture, which are useful for automatic monitoring and notify any incidence of decline in water quality. It enables the fish farms to make interventions to reduce fish mortality. However, advanced monitoring through forecasting is necessary to ensure consistent optimum water quality. This paper presents a web-based water quality monitoring and forecasting system for aquaculture. First, a water quality forecasting model based on the long short-term memory is designed and developed. The model is evaluated and fine-tuned using the existing public dataset. Second, the prototype of the water quality monitoring and forecasting system is developed. An Arduino and Raspberry Pi based water quality data acquisition tool is built. A web-based application is then developed to present the monitoring data and forecasting. A notification module is included to send an alert message to the fish farmers when necessary. The system is tested and evaluated at the fish hatchery in Universiti Malaysia Sabah. The findings show that the proposed system provides better water quality management for fish farms.
The development and usability test of an automated fish counting system based on CNN and contrast limited histogram equalization Leong, Jing Mei; Ahmad Hijazi, Mohd Hanafi; Saudi, Azali; Kim On, Chin; Fui Fui, Ching; Haviluddin, Haviluddin
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.5840

Abstract

The aquaculture industry has rapidly grown over the year. One pertinent aspect is the ability of the aquaculture farm management to accurately count the fish populations to provide effective feeding and the control of breeding density. The current practice of counting the fish manually increased the hatchery workers workload and led to inefficiency. The presented work proposed an intelligent, web-based fish counting system to assist hatchery workers in counting fish from images. The methodology consists of two phases. First, an intelligent fish counting engine is developed. The captured image was first enhanced using the contrast limited adaptive histogram equalization. A deep learning architecture in the form of you only look once (YOLO)v5 is used to generate a model to identify and count fish on the image. Second, a web-based application is developed to implement the developed fish counting engine. When applied to the test data, the developed engine recorded a precision of 98.7% and a recall of 65.5%. The system is also evaluated by hatchery workers in the University Malaysia Sabah fish hatchery. The results of the usability and functionality evaluations indicate that the system is acceptable, with some future work suggested based on the feedback received.
Early Stopping on CNN-LSTM Development to Improve Classification Performance Anam, M. Khairul; Defit, Sarjon; Haviluddin, Haviluddin; Efrizoni, Lusiana; Firdaus, Muhammad Bambang
Journal of Applied Data Sciences Vol 5, No 3: SEPTEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i3.312

Abstract

Currently, CNN-LSTM has been widely developed through changes in its architecture and other modifications to improve the performance of this hybrid model. However, some studies pay less attention to overfitting, even though overfitting must be prevented as it can provide good accuracy initially but leads to classification errors when new data is added. Therefore, extra prevention measures are necessary to avoid overfitting. This research uses dropout with early stopping to prevent overfitting. The dataset used for testing is sourced from Twitter; this research also develops architectures using activation functions within each architecture. The developed architecture consists of CNN, MaxPooling1D, Dropout, LSTM, Dense, Dropout, Dense, and SoftMax as the output. Architecture A uses default activations such as ReLU for CNN and Tanh for LSTM. In Architecture B, all activations are replaced by Tanh, and in Architecture C, they are entirely replaced by ReLU. This research also performed hyperparameter tuning such as the number of layers, batch size, and learning rate. This study found that dropout and early stopping can increase accuracy to 85% and prevent overfitting. The best architecture entirely uses ReLU activation as it demonstrates advantages in computational efficiency, convergence speed, the ability to capture relevant patterns, and resistance to noise.
Mean-Median Smoothing Backpropagation Neural Network to Forecast Unique Visitors Time Series of Electronic Journal Wibawa, Aji Prasetya; Utama, Agung Bella Putra; Lestari, Widya; Saputra, Irzan Tri; Izdihar, Zahra Nabila; Pujianto, Utomo; Haviluddin, Haviluddin; Nafalski, Andrew
Journal of Applied Data Sciences Vol 4, No 3: SEPTEMBER 2023
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v4i3.97

Abstract

Sessions or unique visitors is the number of visitors from one IP who accessed a journal portal for the first time in a certain period of time. The large number of unique daily average subscriber visits to electronic journal pages indicates that this scientific periodical is in high demand. Hence, the number of unique visitors is an important indicator of the accomplishment of an electronic journal as a measure of the dissemination in accelerating the journal accreditation system. Numerous methods can be used for forecasting, one of which is the backpropagation neural network (BPNN). Data quality is very important in building a good BPNN model, because the success of modeling at BPNN is very dependent on input data. One way that can be carried out to improve data quality is by smoothing the data. In this study, the forecasting method for predicting time series data for unique visitors to electronic journals employed three models, respectively BPNN, BPNN with mean smoothing, and BPNN with median smoothing. Based on the findings, the results of the smallest error were obtained by the BPNN model with a mean smoothing with MSE 0.00129 and RMSE 0.03518 with a learning rate of 0.4 on 1-2-1 architecture which can be used as a forecast for unique visitors of electronic journals.
Congestion Predictive Modelling on Network Dataset Using Ensemble Deep Learning Purnawansyah, Purnawansyah; Wibawa, Aji Prasetya; Widiyaningtyas, Triyanna; Haviluddin, Haviluddin; Raja, Roesman Ridwan; Darwis, Herdianti; Nafalski, Andrew
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.333

Abstract

Network congestion arises from factors like bandwidth misallocation and increased node density leading to issues such as reduced packet delivery ratios and energy efficiency, increased packet loss and delay, and diminished Quality of Service and Quality of Experience. This study highlights the potential of deep learning and ensemble learning for network congestion analysis, which has been less explored compared to packet-loss based, delay-based, hybrid-based, and machine learning approaches, offering opportunities for advancement through parameter tuning, data labeling, architecture simulation, and activation function experiments, despite challenges posed by the scarcity of labeled data due to the high costs, time, computational resources, and human effort required for labeling. In this paper, we investigate network congestion prediction using deep learning and observe the results individually, as well as analyze ensemble learning outcomes using majority voting, from data that we recorded and clustered using K-Means. We leverage deep learning models including BPNN, CNN, LSTM, and hybrid LSTM-CNN architectures on 12 scenarios formed out of the combination of level datasets, normalization techniques, and number of recommended clusters and the results reveal that ensemble methods, particularly those integrating LSTM and CNN models (LSTM-CNN), consistently outperform individual deep learning models, demonstrating higher accuracy and stability across diverse datasets. Besides that, it is preferably recommended to use the QoS level dataset and the combinations of 3 clusters due to the most consistent evaluation results across different configurations and normalization strategies. The ensemble learning evaluation results show consistently high performance across various metrics, with accuracy, Matthews Correlation Coefficient, and Cohen's Kappa values nearing 100%, indicates excellent predictive capability and agreement. Hamming Loss remains minimal highlighting the low misclassification rates. Notably, this study advances predictive modeling in network management, offering strategies to enhance network efficiency and reliability amidst escalating traffic demands for more sustainable network operations.
Work accident reporting in coal mining, Indonesia: A systematic literature review Sultan, Muhammad; Setyadi, Djoko; Ramdan, Iwan Muhamad; Haviluddin, Haviluddin; Hidayati, Tetra
Periodicals of Occupational Safety and Health Vol. 2 No. 1 (2023)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/posh.v2i1.7761

Abstract

Background: Work accidents and work-related diseases are still considered as nightmares in Indonesia, especially in the coal mining sector. Badan Penyelenggara Jaminan Sosial (BPJS) Ketenagakerjaan (Social Security Agency for Employment) reported that there were as many as 234,370 cases of work accidents and work-related diseases in 2021, where the mining sector contributed as many as 6,565 cases. This study aims to present the analysis and synthesis of various research to provide solution recommendations in the management of accident reporting which are suitable to the characteristics of coal mining in Indonesia. Method: This study is a Systematic literature review of a number of studies sourced from Elsevier, Science Direct, Google Scholar, Pubmed, Proquest, DOAJ, Perpusnas RI, Garuda, and other sources. Results: Based on the literature analysis, it is found out that reporting management based on digitalization either in the form of website portal or application is a solution to optimize the effort to control work accidents and work-related disease in coal mining. Conclusion: This reporting system can be applied in coal mining in Indonesia.
Co-Authors Achmad Fanany Onnilita Gaffar Achmad Fanany Onnilita Gaffar Adnan, Adam Agus Soepriyadi Ahmad Hijazi, Mohd Hanafi Ahmad Jawahir Ahmad Jawahir Aiman, Ahmad Zuhair Nur Aina Musdholifah Aji Prasetya Wibawa Akhmad Masyudi Alfiansyah, M Nur Ali Sholihin Allo, Adriati Manuk Anam, M Khairul Anggari, Ricky Anindita Septiarini, Anindita Anton Prafanto Arda Yunianta Arda Yunianta Arif Bramantoro Arif Harjanto Arinda Mulawardani Kustiawan Astuti, Wistiani Aulia Rahman Awang Harsa Kridalaksana Bambang Nur Basuki Bangkit Bekti Nurdianto Basuki, Nur Bambang Brins Leonard Pailan Budiman, Edy Burhandenny, Aji Ery Cahyani, Oktari Indi Cholisah Erman Hasihi Chrisman Bonor Sinaga Darwis, Herdianti Davina Putri Ananta Dedy Cahyadi Dedy Mirwansyah Delvina Dwiani Samjar Dhanar Intan Surya Saputra Dhanar Intan Surya Saputra Didit Suprihanto, Didit Dinda Izmya Nurpadillah Djoko Setyadi Dwiyanto, Felix Andika Efrizoni, Lusiana Fahrul Agus Fatkhul Hani Rumawan Fauzan, Ammar Nabil Faza Alameka Fazma Urmila Jannah Helmi Puadi Firdaus, Ardhifa Firdaus, Muhammad Bambang Fui Fui, Ching Fui, Ching Fui Gaffar, Emmilya Umma Aziza Gubtha Mahendra Putra Gubtha Mahendra Putra Gultom, Tiopan Hendry Manto Hairah, Ummul Hamdani Hamdani Hatta, Heliza Rahmania Heliza Rahmania Hatta, Heliza Rahmania Helmi Puadi, Fazma Urmila Jannah Herdianti Darwis Herlina Jayadiyanti Hery Widijanto Hijazi, Mohd Hanafi Ahmad Hijratul Aini Hijratul Aini Huzain Azis Ibrahim, Muhammad Rivani Ifandi, Muhammad Imam Tahyudin Imam Tahyudin Irwan Gani Islamiyah Islamiyah Islamiyah Islamiyah Iwan Muhamad Ramdan Izdihar, Zahra Nabila Jainuddin Jainuddin Jayadiyanti, Herlina Julius Rinaldi Simanungkalit Kesuma, Muhammad Afrizal Kim On, Chin Leong, Jing Mei Lilik Hendrajaya Malani, Rheo Maratus Soleha Masyudi, Akhmad Mega Yoalifa Ming Foey Teng Mohd Shahizan Othman Mohd Shahizan Othman Mualin Renaldy Setiabudi Muhammad Bambang Muhammad Rafif Hanif Muhammad Soleh Muhammad Sultan, Muhammad Muhammad Syarif Abdillah Nafalski, Andrew Nataniel Dengen Ngurah Satria Darmawangsa Ni’mah Moham Norazah Yusof Novianti Puspitasari Nugraha, Cellia Auzia Nugroho, Basuki Rahmat Nurfaizi Amin Olivia Angelica Murtioso Omar Mohammed Barukab Omar Obarukab Norazah Yusof Othman, Mohd Shahizan Pakpahan, Herman Santoso Paroliyan, Abraham Pradinata, Muhammad Aji Prafanto, Anton Pratama, Arief Ardi Prawira, Muhammad Nanda Purnawansyah Purnawansyah Puspitasari, Novianti Putut Pamilih Widagdo, Putut Pamilih Qonita, Adiba Rahayu, Ervina Raja, Roesman Ridwan Rayner Alfred Rayner Alfred Rayner Alfred Rayner Alfred Rayner Alfred Rayner Alfred Rendy Ramadhan Rima Yustika Hasnida Saputra, Irzan Tri Sarjon Defit Saudi, Azali Setyadi, Hario Jati Simanungkalit, Julius Rinaldi Sitompul, Tua Delima Soepriyadi, Agus Suryani Junita Patandianan Sutikno Sutikno Suwardi Gunawan Taruk, Medi Tindik, Emmanuel Steward Triyanna Widiyaningtyas Triyanna Widyaningtyas Triyanna Widyaningtyas, Triyanna Utama, Agung Bella Putra Utomo Pujianto Vina Zahrotun Kamila Wandi, Faizul Anwar Wati, Masna Wei, Toh Yin Widians, Joan Angelina Wong, Kelvin Yahya, Fiqri Khaidar Yudi Sukmono, Yudi Yulita Salim Yunianta, Arda Yusof, Omar Obarukab Norazah Zainal Arifin Zainal Arifin