Claim Missing Document
Check
Articles

Prediksi Transaksi Penjualan Produk menggunakan Metode Exponential Smoothing pada Pengguna Aplikasi Ngorder.id Muhammad Rizqi Ramadhan; Nanang Yudi Setiawan; Welly Purnomo
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 6 No 10 (2022): Oktober 2022
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The retail sellers who use digital tools in business adaptation are can survive better during the pandemic. PT. Ayo Techno Idea, as a company that provides digital buying and selling transaction tools, has an application called Ngorder.id. Where application users (sellers) have difficulty dealing with uncertain stock needs manually. This study aims to explain the results of the implementation of the prediction method and dashboard visualization according to the needs of Ngorder.id application users. The research analysis procedure uses the Knowledge Discovery in Database process which consists of the data collection and evaluation stages. The results of the study have found that four data attributes are needed in the implementation of data mining prediction methods. Then, the results of the implementation of the prediction of product sales transactions using the Single Exponential Smoothing method got decent performance with details of one of the nine products having a MAPE value of 14.89%, seven products having a MAPE value range of 20% to 50%, and one product having a MAPE value of 68, 21%. While the implementation of the Double Exponential Smoothing method has a low-performance tendency. Where obtained seven products have a MAPE value of more than 50% and the remaining two have a MAPE value of 42.79% and 33.68%. In the study, the results of the visual representation of the data were divided into three pages with different focuses and got a usability score in the good category. So it is feasible to use it as a feature reference and to help make decisions on sales transactions for application products.
Analisis Sentimen Ulasan Pelanggan dengan Metode Support Vector Machine (SVM) untuk Peningkatan Kualitas Layanan pada Restoran Warung Wareg Achmad Nofandi; Nanang Yudi Setiawan; Dwija Wisnu Brata
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 1 (2023): Januari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Warung Wareg is a restaurant that serves a home-cooked menu with a mainstay menu in the form of various processed fish-based ingredients. In its business activities, restaurants need to carry out customer relationship management, one of which is by managing feedback well. One way that can be done is to manage reviews from users. The number of reviews numbering in the thousands makes it difficult for Warung Wareg to manage customer reviews, therefore a sentiment analysis is necessary to find out what customers think about Warung Wareg's services and products. The source of review data comes from Google Reviews and Tripadvisor by utilizing selenium for web scraping. Sentiment analysis was performed using the Support Vector Machine (SVM) method with term frequency - inverse document frequency (TF-IDF) as word weighting. Random undersampling technique is used to handle imbalance dataset. Hyperparameter tuning technique is done to produce the best model. Testing the results using the confusion matrix produces an accuracy value of 94%. The dashboard page is used to visualize the classification results using the Google Data Studio platform. The negative review ranking process is carried out to find the most negative reviews given by customers. From the results of the classification, a root cause analysis is also carried out to find the root causes of the negative reviews to formulate business recommendations that can be taken to overcome these problems.
Analisis Sentimen Ulasan Pelanggan Kober Mie Setan menggunakan Algoritma Support Vector Machine Satrio Arif Budiman; Nanang Yudi Setiawan; Dwija Wisnu Brata
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kober Mie Setan is the first restaurant to offer spicy noodle products at affordable prices since 2010. New competitors in the same industry make Kober Mie Setan require a business strategy that can maintain a competitive advantage and serve as a reference for evaluation. One way to develop an effective business strategy is to pay attention to customer reviews. However, Kober Mie Setan needs the technology to manage customer reviews that can generate useful information. One solution is to use sentiment analysis of Kober Mie Setan Malang's customer reviews. This study uses 2,496 customer review data from 2016-2022 obtained through web scraping techniques on the Google Review website. Furthermore, the sentiment classification process uses a support vector machine (SVM) algorithm with the term frequency-inverse document frequency (TF-IDF). Testing with the confusion matrix produces an accuracy value of 92%, a reference for model performance because the data is balanced. The results of the sentiment analysis process are visualized in the form of a dashboard and analyzed using root cause analysis. Root cause analysis produces a finding in the form of root causes in food quality, service quality, price, and physical environment, which will be discussed with stakeholders to create business recommendations.
Analisis Sentimen Ulasan Google Review New Star Cineplex Pasuruan menggunakan Artificial Neural Network (ANN) Sandrian Yulian Firmansyah Noorihsan; Nanang Yudi Setiawan; Mochamad Chandra Saputra
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Service provider companies must be able to satisfy the expectations of their customers. Therefore every company must find a way to satisfy its customers. After the company knows the factors that cause consumer dissatisfaction, the next step is to make changes to the cinema. One of the things that can be done to encourage the film industry in Indonesia is to improve the quality of cinemas in Indonesia by means of sentiment analysis of customer reviews as material for evaluating cinema quality analysis. According to New Star Cineplex Pasuruan, customer reviews are key for quality analysis. The classification method that will be used to carry out sentiment analysis of 796 customer reviews of New Star Cineplex Pasuruan which have gone through the text preprocessing stage is an Artificial Neural Network (ANN) at the level of price, place and customer service aspects. Evaluation of the ANN model using the fusion matrix shows that the value of the model accuracy has a proportion of 88%. On positive sentiment, it has a precision of 86%, 90% recall, 88% f1-score. Negative sentiment has a precision value of 89%, 84% recall, 86% f1-score. The results of the root cause analysis are evaluation recommendations in the form of gradual improvements to the general aspect of facilities, increased notifications and provision of queue numbers on aspects of customer service, and improvement of facilities on the price aspect.
Evaluasi dan Perbaikan Rancangan Antarmuka Pengguna Web Dinas Kebudayaan, Pariwisata, Pemuda dan Olahraga Kota Kediri menggunakan Metode Goal-Directed Design (GDD) Nadhif Mahendra Putra; Intan Sartika Eris Maghfiroh; Nanang Yudi Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Office of Culture, Tourism, Youth and Sports (Disbudparpora) of the City of Kediri is a government agency that deals with cultural issues, manages tourism and youth sports activities in the City of Kediri. The staff who are responsible for managing the information media do not have new innovations regarding website design so it looks very monotonous. Therefore, it is necessary to recommend web design recommendations for the City of Kediri Disbudparpora so that the purpose of the recommendations is better for users. This user interface improvement will use the Goal-Directed Design (GDD) method which consists of six steps, the first of which is research on user desires. The second step is modeling which creates a persona. The third step is requirements that create scenario contexts and user requirements. The fourth step is the framework, namely making a wireframe. The fifth step is refinement which creates high-quality prototypes. Then the last step is support to do user testing and evaluation with the System Usability Scale (SUS) questionnaire. The User Testing process has obtained good results while the final evaluation has received an average score of 80.75 and is in the acceptable category in the acceptability ranges. Category B on the grade scale. The excellent category on the adjective rating and earned an A on the percentile rank. Therefore, the Disbudparpora improvement recommendation website is declared acceptable by users.
Rekomendasi Peningkatan Layanan Okejek dengan Root Cause Analysis berdasarkan Hasil Analisis Sentimen Ulasan Pengguna Andhika Mifta Alauddin; Nanang Yudi Setiawan; Mochamad Chandra Saputra
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PT. Okejek Kreasi Indonesia is one of the company that engaged in the field of online transportation with it's flagship product, Okejek. However, Okejek still unable to compete with the giants in the field of online transportation. To find out the main causes of these problems, one way that can be done is by using sentiment analysis. Therefore, a sentiment analysis using 1890 data from user reviews on Google Play Store is performed. By using Recurrent Neural Network algorithm, an accuracy value and F1 score of 96% is obtained. After the sentiment analysis was successfully carried out, it is followed by Root Cause Analysis that based on 3 aspects which are service, price, and staff aspects. From these 3 aspects, the main problem were found to be a problem in the application, driver-partner's behavior, and the existing payment system. Therefore, a joint recommendation were made with stakeholders which resulted in the form of solutions that are improving applications, tightening SOPs, and also improving payment services.
Perancangan User experience Aplikasi BAZNAS Jombang berbasis Mobile menggunakan Metode Design Thinking (Studi Kasus : BAZNAS Jombang) Ananda Risqi Amalia; Intan Sartika Eris Maghfiroh; Nanang Yudi Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 2 (2023): Februari 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Badan Amil Zakat Nasional Kabupaten Jombang (BAZNAS) is an agency that has the duties and functions of collecting and distributing zakat, infaq, and alms (ZIS) at the Jombang Regency level. Based on the observations and the results of pre-research interviews, it is known that BAZNAS Jombang requires a mobile application that can support all work programs and meet user needs. These needs include a system for calculating the amount of zakat, paying zakat (either by bank transfer, direct meeting, or QRIS code), online infaq, donations, news, zakat literacy, and consultation. This research aims to meet user needs and solve problems experienced by users when donating through a mobile application. The design method used is design thinking and usability testing methods for testing prototypes. The design thinking method consists of 5 stages: empathize, define, ideate, prototype, and test. The data collection results using the In-depth Interview method found 6 problems that must be resolved and 14 needs which include payment processes, donations and zakat, as well as transparency of funds. Of all these problems and needs, produce 4 menus and 111 pages with guidelines using google material design. Based on the results of the final prototype evaluation of the 10 scenarios tested on 5 users using the moderated usability testing method through the Maze, it is known that all users have completed the scenarios given with an average success rate of 100% from the direct and indirect path. Meanwhile, through the calculation of the Likert scale, an average value of 4.82 is obtained. Even so, 11 pages had to be Redesigned because they were considered different from users' needs, expectations and perceptions.
Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K-Nearest Neighbor (K-NN) (Studi Kasus: Pengunjung Kolam Renang Brawijaya) Nanda Petty Wahyuningtyas; Dian Eka Ratnawati; Nanang Yudi Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 5 (2023): Mei 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ulasan merupakan salah satu media yang dapat digunakan untuk melakukan analisis untuk meningkatkan pelayanan dan kebutuhan bisnis. Ulasan pengunjung kolam renang Brawijaya dapat dilakukan analisis sentimen dengan menggunakan metode K-Nearest Neighbor (K-NN). Ulasan pengunjung dapat diperoleh melalui media sosial Google Review. Ulasan pada Google Review diperoleh dengan scraping menggunakan extension Instant Data Scraper yang disediakan oleh Google Chrome. Data ulasan pengunjung kolam renang Brawijaya yang diperoleh melalui proses scraping untuk analisis sentiment metode K-NN berjumlah 326 data positif dan 301 data negatif. Data ulasan akan dilakukan preprocessing dengan empat tahap tahap seperti, case folding, tokenizing, stopword removal, dan stemming. Preprocessing tahap stop word removal dan stemming menggunakan kamus bahasa yang dibuat manual sesuai dengan kebutuhan dokumen agar hasil preprocessing lebih baik. Hasil pengujian kinerja sistem terhadap metode K-NN mendapat nilai tertinggi pada k = 3 dan k =4. Nilai k = 3 menghasilkan nilai accuracy sebesar 0,76, precision sebesar 0,77, dan recall sebesar 0,75. Nilai k = 4 menghasilkan nilai accuracy sebesar 0,76, precision sebesar 0,76, dan recall sebesar 0,76. Hasil pengujian K-NN akan dilanjutkan untuk menganalisis akar permasalahan dengan menggunakan metode Root Cause Analysis (RCA). Analisis RCA dapat dilakukan dengan menggunakan diagram Fishbone agar lebih mudah dalam menganalisis akar permasalahan.
Root Cause Analysis berbasis Segmentasi Pelanggan menggunakan Algoritma K-Means Clustering dan Teknik RFM (Recency, Frequency, Monetary) pada Nichoa Chocolate Rokhmah Vira Santi; Satrio Hadi Wijoyo; Nanang Yudi Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 13 (2023): Publikasi Khusus Tahun 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dipublikasikan di Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK)
Implementasi Sistem Pendukung Keputusan untuk Deteksi Kelayakan Kenaikan Jabatan Karyawan PT Venturo Pro Indonesia menggunakan Metode Analytic Hirarchy Process (AHP) Nashihul Ibad Al Amin; Bayu Rahayudi; Nanang Yudi Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 7 No 5 (2023): Mei 2023
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PT Venturo Pro Indonesia merupakan perusahaan outsourcing yang bergerak pada bidang jasa konsultan IT dan pengembangan software. PT Venturo biasanya melakukan penilaian karyawan setiap satu semester atau lebih tepatnya dilakukan pada bulan Juli dan Desember. Adapun penilaian dilakukan untuk mengetahui kemampuan setiap karyawan dan akan dijadikan bahan pertimbangan perusahaan untuk memutuskan apakah karyawan tersebut layak mendapatkan kenaikan jabatan. Dalam melakukan penilaian, perusahaan masih menggunakan cara manual dengan memberikan nilai setiap kriteria pada masing-masing karyawan tanpa adanya pembobotan setiap kriteria sehingga bisa menyebabkan adanya subjektifitas. Berdasarkan uraian di atas, peneliti memiliki ide untuk membuat sistem pendukung keputusan untuk membantu perusahaan dalam melakukan penilaian kinerja karyawan di PT Venturo Pro Indonesia menggunakan metode AHP. Metode AHP dinilai dapat memberikan keputusan yang baik untuk studi kasus dengan kriteria yang banyak. Dari hasil perhitungan dengan 12 data karyawan PT Venturo Pro Indonesia dengan metode pengujian spearman rank correlation menghasilkan koefisien korelasi sebanyak 0.958 yang berarti memiliki hubungan yang sangat kuat. Dari hasil pengujian, menyimpulkan bahwa sistem pendukung keputusan menggunakan metode AHP dapat digunakan sebagai pembantu perusahaan dalam mengambil keptusan kenaikan jabatan karyawan dan juga mempermudah proses serta memberikan hasil yang serupa seperti proses yang dilakukan secara manual.
Co-Authors Achmad Nofandi Ade Ayu Puspitasari Adeyaksa Galuh Waluyo Adha Apriliosusworo Adhitira Febrieztha Ramadhan Adilla Widyandhana Nuriman Aditya Rachmadi Adityo Dwirahmawan Agustinus Ryan Wicaksono Ahmad Afif Supianto Ahmad Afif Supianto Ain Nur Anisa Akbar Ilham Aldhila Meykasari Alfian Hakim Alya Paramitha Ayuningsih Amanda Puti Wibawa Ananda Risqi Amalia Andhika Akbar Saputra Andhika Mifta Alauddin Andi Reza` Perdanakusuma Anggara Cahya Nugraha Anggie Tamara Blanzesky Annisa Arifa Sesyazhade Apriyanti Apriyanti Arieftia Wicaksono Aulia Dwi Fitriani Ayu Pramadita Dewi Azhari Arsyad Azri Putri Rahmatika Bayu Rahayudi Bella Karina Sari Buce Trias Hanggara Budi Santoso Cahyaningtyas Sekar Wahyuni Carellia An-nisa Monik Citra Hemas Jati Inayu Claudio Canigia Guntara Daniel Austin Dominicus Deafinansia Nurido Andiyani Dedi Romario Desy Miladiana Devi Septiani Devita Widyasari Diah Priharsari Dian Eka Ratnawati Dicky Ilham Mualfi Dimas Hariyanto Sudarpi Dimounitif Nelaspaba Dinar Fairus Salsabillah Dinar Indah Dwi Utami Dinda Agnes Putri Dinda Ayu Rudyana Putri Dio Hilmi Habibi Dio Rahmat Putra Dion Ricky Saputra Djoko Pramono Djoko Purnomo Dorothy Gabriel Sihombing Dwi Asri Nuryulianti Dwija Wisnu Brata Dzurriyatul Iflahah Ellen Yanuarti Endang Suryawati Erni Dwi Hartini Erzhal Risan Wikata Fajar Ubaidillah Ahmad Faqih Hidayatur Rahman Faris Wibowo Putro Farisa Aidilla Alfas Fawwaz Roja Mahardika Fawwaz Roja Mahardika Febiko Ramadina Febrian Pandu Widhianto Fitra A. Bachtiar Fitra Abdurrachmad Bachtiar Fitra Abdurrachman Bachtiar Frydo Tio Fernando Hafizh Yuwan Fauzan Hamim Nizar Yudistira Hanifah Muslimah Az-Zahra Haris Surya Wijayanto Harisul Ikrom Amin Heraspati Yudha Pratama Herman Tolle Hetty Mukammilah Higam Saiful Sadzali Hilmi Rezkian Aziz Dama Hilwa Aminatus Sholihah Ibnu Irawan Pratama Iffa Aulia Ulwani Ihza Razan Alghifari Ilma Bunga Sahara Imam Setyo Wibowo Indra Fahrizal Inggrid E. A. Siahaan Inka Setya Anggraini Intan Rumaysha Intan Sartika Eris Maghfiroh Iqbal Taufiq Ahmad Nur Ismiarta Aknuranda Istania Salma Jesy Thesalonica Mononimbar Juara Hutagalung Kartika Utami Kelvin Yabes Sitompul Kevin Gusti Farras Fari' Utomo M. Iqbal Farras Pratama Mega Isma Juwita Merlien Yuliana Permatasari Moch. Rosul Zein Mochamad Chandra Saputra Mohammad Malik Abdul Azis Muhamad Fauziawan Agung Rewanda Muhammad Aswin Muhammad Averous Mahdafikiyah Muhammad Ferdyandi Muhammad Hanif Hasanain Muhammad Ibrahim Al Ghazi Saragi Muhammad Indra Firdaus Muhammad Iqbal Muhammad Rasyad Fauzan Muhammad Rayhan Ravandika Muhammad Rizqi Ramadhan Muhammad Taufik Dharmawan Muhammad Tri Hermawan Mumtazah Rizti Arini Nabilah Iftah Nella Nadhif Mahendra Putra Nafiani Nafiani Nanda Petty Wahyuningtyas Nashihul Ibad Al Amin Nasita Ratih Damayanti Nazva Abiya Niken Hendrakusma Wardani Niken Hendrakusma Wardani Nourman Hajar Novira Azpiranda Novriani Dewi Anwar Nur Fatimah Nur Laita Rizki Amalia Prakoso Adi Bagaskara Prasetyo Iman Nugroho Priyambadha, Bayu Putera Iga Arrahma Putri Puspitasari Raden Sandra Yuwana Raditya Rizky Putra Rafi Audian Retno Indah Rokhmawati Rista Yasin Lamohammad Hende Rizal Halim Adirasyid Rois Yanuar Rahman Wahyudi Rokhmah Vira Santi Ryan Dwi Pambudi Salsabilla Syafta Sandrian Yulian Firmansyah Noorihsan Sarah Anggina Satrio Agung Wicaksono Satrio Arif Budiman Satrio Dwiartono Satrio Hadi Wijoyo Sheila Maulidia Sholachuddin Al Ayubi Syifa Basyasyah Bysi Theresia Emiliana Boleng Tirta Saraswati Tito Rhenaldi Priono Topan Prakoso Tri Afirianto Tri Susanto Victor Axelius Kristianto Siren Welly Purnomo Whita Parasati Wildan Arrizal Wahyu Sutomo Wildan Dery Rahadi Wira Kumara Wiratama Ahsani Taqwim Yoga Tika Pratama Yusi Tyroni Yusi Tyroni Mursityo Zaenal Kurniawan Zulfiar Ryanda Putra