Claim Missing Document
Check
Articles

Found 36 Documents
Search

ANTIOXIDANT ACTIVITY ON SARRABBA IS BASED ON THE PROPORTION OF RED GINGER EXTRACT (ZINGIBER OFFICINALE ROSCOE) AND CINNAMON EXTRACT (CINNAMOMUM VERUM J. PRESL) Oessoe, Yoakhim Y.E.; Assa, Jan R.; Paat, Frangky Jessy; Tangkeallo, Sindy C. T.; Tooy, Dedie; Koapaha, Teltje; Tumbelaka, Selvie; Mamuaja, Christine F; Latumakulita, Luther A.
Journal of Agriculture Vol. 2 No. 02 (2023): Research Articles, July 2023
Publisher : ITScience (Information Technology and Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/joa.v2i02.2832

Abstract

This study aims to evaluate the antioxidant activity, total phenol, yield and evaluation of the panelists' preference level including color, taste and aroma of instant sarabba. Sarabba is processed into an instant drink to extend the shelf life of the sarabba drink and is practical.  The research method used was a completely randomized design (CRD) method with 4 treatment levels of the proportions of red ginger extract and cinnamon extract namely A (100% : 0%), B (95% : 5%), C (90% : 10%) ) and D (85% :15%) with 3 repetitions. The analytical method used in this research is the Folin Chiocalteau method for the total phenol test, the DPPH (1,1-diphenyl, -2 picrylhydrazyl) method for the antioxidant activity test. The results showed that the IC50 of instant sarabba ranged from 662.13 - 886.93 ppm and total phenol ranged from 2.21 - 6.75 mgGAE/100 g sample. Treatment of the proportion of 100% red ginger extract and 0% cinnamon extract had the strongest antioxidant activity with IC50 of 662.13 ppm and total phenol with a value of 6.75 mgGAE/100 g simple
PENERAPAN RULE-BASED EXPERT SYSTEM UNTUK REKOMENDASI UMPAN BERDASARKAN SPESIES IKAN DAN KONDISI PERAIRAN DI LAUT MANADO Sintaro, Sanriomi; Latumakulita, Luther Alexander; Sabandar, Vederico Pitsalitz
JRIS : Jurnal Rekayasa Informasi Swadharma Vol 5, No 2 (2025): JURNAL JRIS EDISI JULI 2025
Publisher : Institut Teknologi dan Bisnis (ITB) Swadharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56486/jris.vol5no2.824

Abstract

Capture fisheries are an important economic sector for coastal communities in the Manado region. One of the key factors influencing fishing success is the selection of appropriate bait. Choosing the correct bait can significantly improve catch efficiency, while incorrect bait selection may reduce fishing effectiveness. In practice, bait selection among local fishermen still relies heavily on traditional knowledge passed down orally or gained through personal experience, which is not always easily accessible to novice fishermen. This study aims to develop a Rule-Based Expert System that provides bait selection recommendations to support fishing activities around Manado. The system was designed by incorporating practical knowledge from experienced fishermen obtained through semi-structured interviews and field observations. The parameters used in the system include target fish species, water depth, sea current strength, and season. The Rule base was constructed based on various combinations of these parameters and implemented as a web-based application using PHP programming language. Testing results show that the system achieves a 90% accuracy rate in providing recommendations based on validation conducted with local fishermen. Further evaluation indicates that the system is considered easy to use and beneficial as a decision-support tool for bait selection, particularly for novice fishermen. Additionally, the fishermen provided positive feedback for future system enhancements, suggesting the inclusion of additional contextual factors such as weather conditions and lunar phases. In conclusion, the developed Rule-Based Expert System has significant potential to support more efficient and sustainable fishing practices in the waters around Manado and facilitate knowledge transfer to the next generation of fishermen.Perikanan tangkap merupakan sektor ekonomi yang sangat penting bagi masyarakat pesisir di wilayah Manado. Salah satu faktor kunci yang mempengaruhi hasil tangkapan ikan adalah pemilihan umpan yang tepat. Umpan yang sesuai dapat meningkatkan peluang keberhasilan penangkapan, sementara pemilihan umpan yang kurang sesuai dapat menyebabkan penurunan efisiensi usaha penangkapan. Dalam praktiknya, pemilihan umpan oleh nelayan di wilayah ini masih sangat bergantung pada pengetahuan tradisional yang diperoleh melalui pengalaman pribadi atau diwariskan secara lisan, sehingga tidak selalu mudah diakses oleh nelayan pemula. Penelitian ini bertujuan untuk mengembangkan sebuah Rule-Based Expert System yang dapat memberikan rekomendasi pemilihan umpan untuk mendukung kegiatan perikanan tangkap di perairan sekitar Manado. Sistem dirancang dengan mengadopsi pengetahuan praktis dari nelayan berpengalaman, yang diperoleh melalui proses wawancara semi-terstruktur dan observasi lapangan. Parameter yang digunakan dalam sistem meliputi spesies ikan target, kedalaman perairan, arus laut, dan musim. Rule base disusun berdasarkan kombinasi keempat parameter tersebut, kemudian diimplementasikan dalam sebuah aplikasi berbasis web menggunakan bahasa pemrograman PHP. Hasil pengujian menunjukkan bahwa sistem mampu memberikan tingkat kesesuaian rekomendasi sebesar 90%, berdasarkan validasi yang dilakukan bersama nelayan di wilayah Manado. Evaluasi lebih lanjut menunjukkan bahwa sistem ini dinilai mudah digunakan, serta bermanfaat sebagai alat bantu dalam proses pengambilan keputusan terkait pemilihan umpan, terutama bagi nelayan pemula. Selain itu, nelayan memberikan masukan positif terkait pengembangan sistem ke depan, termasuk penambahan faktor-faktor lain seperti kondisi cuaca dan fase bulan. Dengan demikian, Rule-Based Expert System yang dikembangkan dalam penelitian ini memiliki potensi besar untuk mendukung perikanan tangkap yang lebih efisien dan berkelanjutan di perairan sekitar Manado, serta membantu proses transfer pengetahuan kepada generasi nelayan baru
APPLICATION OF THE FUZZY TOPSIS METHOD FOR LECTURER CERTIFICATION ASSESSMENT Raintung, Stephanie Marceline; Latumakulita, Luther A.; Paat, Franky; Karim, Irwan; Sentinuwo, Steven; Islam, Noorul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp1747-1764

Abstract

Lecturer Certification (Serdos) is the method of granting educational certificates to lecturers as a formal verification of the speaker's recognition as an expert at a higher level of teaching. In Lecturer Certification, there is an Assessment of Lecturers' Self-Statements in Higher Education Tridharma Performance (PDD-UKTPT), which is divided into three Assessment Elements, namely Teaching, Research and Publication of Scientific Work and Community Service (PkM). The study focuses on teaching assessment. Sam Ratulangi University is one of the Universities Organizing Educator Certification for Lecturers (PTPS) in 2023. The Lecturer Certification assessment at Sam Ratulangi University does not describe the specific assessment range or include the importance weight of each criterion. Thus, this research aims to apply the Fuzzy TOPSIS method as an alternative in the assessment, which determines the importance and weight of each criterion and provides a description of the specific assessment range for each criterion to overcome uncertainty in the evaluation to provide clear guidelines for Serdos assessors in conducting the assessment. The research results regarding lecturer suitability decisions in assessing the Teaching Element. Therefore, it is found that Fuzzy TOPSIS can be used as an assessment method in Lecturer Certification, and it is better suited to handle the uncertainty issues often encountered in lecturer certification assessments. The result of this study provides an excellent accuracy of 100% compared with the manual method.
IMPLEMENTATION AND COMPARISON IN USING STATE PATTERN ON MAIN CHARACTER MOVEMENT (CASE STUDY : POCONG JUMP VIDEO GAME VERSION 1.0) Sintaro, Sanriomi; Salaky, Deiby Tineke; Latumakulita, Luther Alexander; Takaendengan, Mahardika Inra; Bernard, Bernard; Surahman, Ade; Islam, Noorul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 2 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss2pp0955-0968

Abstract

Game development success is often hard to achieve due to various problems such as performance issues, malfunctioning features, and poorly organized program structure. The problems that arise can be prevented by using the design pattern as a game programming architecture from the beginning of development. By implementing a design pattern, the process of developing video games can be made easier and simplified. The development team can focus its efforts on producing better quality video games. In this study, design patterns that would be used are state pattern and finite state machine. The state pattern is implemented by encapsulating the character's behavior in a class called state. Finite state machine will then facilitate the transition of states caused by user/player input or variable value changes. State pattern and finite state machine is tested with test case and game performance is tested with software metric. The result obtained from this study are state pattern and finite state machine have a valid component structure and could improve performance efficiency in video games.
Website Development of Information System Study Program UNSRAT as A Media Information Pagewang, Yalon Bu'tu; Pinontoan, Benny; Lapihu, Dodisutarma; Latumakulita, Luther Alexander; Takaendengan, Mahardika Inra; Ngangi, Stephano Caesar Wenston; Montolalu, Chriestie Ellyane Juliet Clara
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2025): Volume 6 Number 2 June 2025
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Although the Information Systems Study Program at UNSRAT had an existing website, it failed to effectively deliver up-to-date and comprehensive academic information. Both students and the broader community often experienced difficulties in accessing essential program-related content. In addition, the site's visual design was deemed unattractive and did not meet user expectations. objective of this research is to design and implement a more interactive and informative website to enhance the efficiency of academic information dissemination. This study employs the Rapid Application Development (RAD) methodology, encompassing requirement analysis, system design through UML diagrams and wireframes, system implementation using the CodeIgniter framework, and functionality testing via the black-box testing approach. The findings revealed that all implemented website features operated as intended and aligned with user requirements. Furthermore, analysis of feedback from 70 respondents yielded an average rating of 4.1 out of 5.0, indicating that the website successfully met user expectations regarding accessibility, visual design, content relevance, and overall technical performance.
Combination of Feature Extractions for Classification of Coral Reef Fish Types Using Backpropagation Neural Network Latumakulita, Luther Alexander; Arya Astawa, I Nyoman Gede; Mairi, Vitrail Gloria; Purnama, Fajar; Wibawa, Aji Prasetya; Jabari, Nida; Islam, Noorul
JOIV : International Journal on Informatics Visualization Vol 6, No 3 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.3.1082

Abstract

Feature extraction is important to obtain information in digital images, where feature extraction results are used in the classification process. The success of a study to classify digital images is highly dependent on the selection of the feature extraction method used, from several studies providing a combination of feature extraction solutions to produce a more accurate classification.  Classifying the types of marine fish is done by identifying fish based on special characteristics, and it can be through a description of the shape, fish body pattern, color, or other characteristics. This study aimed to classify coral reef fish species based on the characteristics contained in fish images using Backpropagation Neural Network (BPNN) method. Data used in this research was collected directly from Bunaken National Marine Park (BNMP) in Indonesia. The first stage was to extract shape features using the Geometric Invariant Moment (GIM) method, texture features using Gray Level Co-occurrence Matrix (GLCM) method, and color feature extraction using Hue Saturation Value (HSV) method. The third value of feature extraction was used as input for the next stage, namely the classification process using the BPNN method. The test results using 5-fold cross-validation found that the lowest test accuracy was 85%, the highest was 100%, and the average was 96%. This means that the intelligent model derived from the combination of the three feature extraction methods implemented in the BPNN training algorithm is very good for classifying coral reef fish.
Co-Authors Aji Prasetya Wibawa Altien Rindengan Altien Rindengan Alwin Melkie Sambul Ambarita, Yolanda Margareta Anastasia, Lenshy Aprisilia Andar Alwein Pinilas Arista Mandagi Arthur G. Pinaria Assa, Jan Rudolf Benny Pinontoan Bernard Bernard, Bernard Bobby Polii Budiman, Glenn Chriestie E. J. C. Montolalu Chriestie E. J. C. Montolalu Dedie Tooy Deiby Tineke Salaki Djoni Hatidja Eliasta Ketaren, Eliasta Enny Itje Sela Fajar Purnama Felliks Tampinongkol, Felliks Frangky J. Paat Gybert Saselah I Nyoman Gede Arya Astawa Islam, Noorul Jabari, Nida Jantje Pongoh Jevenston Lalenoh John Socrates Kekenusa Julana Rarung Julana Rarung, Julana Jullia Titaley Karim, Irwan Koibur, Mayko Edison Kusuma, Samuel D. A. Lapihu, Dodisutarma Lindsay Mokosuli Liwu, Suzanne L. Mairi, Vitrail Gloria Mamuaja, Christine F Manarisip, Endrue Jehezkiel Mandagi, Franklin Mans Mananohas Mans Mananohas, Mans Marni Sumarno Marni Sumarno, Marni Max R Kumaseh Miske Silangen Montolalu, Chriestie Ellyane Juliet Clara NELSON NAINGGOLAN NELSON NAINGGOLAN Ngangi, Stefano C.W. Ngangi, Stephano Caesar Wenston Noorul Islam Noviania, Reski Oessoe, Yoakhim Y.E. Paat, Frangky J Paat, Frangky Jessy Paat, Franky Pagewang, Yalon Bu'tu Pinatik, Herry F Pioh, Diane Raintung, Stephanie Marceline Rindengan, Altien J. Rinny Mamarimbing Rumambi, David P Salaky, Deiby Tineke Sandra Pakasi Sandy Laurentius Lumintang Sanriomi Sintaro Saroyo Saroyo Selvie Tumbelaka Sirait, Hasanuddin Sofia Wantasen Steven Ray Sentinuwo Sulu, Brian Sumual, Gery Josua Surahman, Ade Takaendengan, Mahardika Inra Tangkeallo, Sindy C. T. Teltje Koapaha Tenda, Edwin Tineke M. Langi Vederico Pitsalitz Sabandar Winsy Weku Winsy Weku Yohanes Langi Yohanes Langi