Claim Missing Document
Check
Articles

Sistem Kendali Posisi Sel Surya Menggunakan PID Kontroler Evan Dwi Septiawan; Ramdhan Nugraha; Sony Sumaryo
eProceedings of Engineering Vol 6, No 2 (2019): Agustus 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Energi terbarukan sekarang ini menjadi topik yang sedang gencar-gencarnya diperbicarakan. Salah satunya adalah sel surya, sel surya termasuk dalam jenis pembangkit listrik yang bersumber dari cahaya matahari. Namun pada kenyataanya penggunaan sel surya kurang diminati dikarenakan hasilnya yang kurang optimal. Oleh karena itu, pada tugas akhir ini sebuah sel surya dirancang agar dapat bergerak mengikuti arah cahaya matahari sehingga hasil yang didapat lebih optimal. Tugas akhir ini berfokus pada perancangan kontroler PID yang digunakan untuk mengatur pergerakan sel surya. Sensor cahaya digunakan untuk mengukur jumlah cahaya yang masuk ke sel surya. Mikrokontroler digunakan sebagai alat untuk memproses nilai hasil pengukuran jumlah cahaya dan akan diproses menggunakan kontroler PID. Driver motor digunakan sebagai alat untuk mengatur arah serta kecepatan motor DC yang telah terhubung dengan sel surya. Dari pengujian yang sudah dilakukan, keluaran sel surya dengan menggunakan kontroler PID sebagai kendali posisi dapat menghasilkan daya 20,82% lebih besar dibandingkan dengan keluaran sel surya yang bersifat statis (dengan mengabaikan kebutuhan energi pada motor DC). Kata kunci: Sistem kendali, sel surya, kontroler PID
Perancangan Dan Implementasi Prototipe Sistem Keamanan Rumah Berbasis Pengenalan Wajah Menggunakan Metode Fisherface Dengan Pusat Kendali Telegram Pada Raspberry Pi Danish Ario Wirawan; Nur Ibrahim; Ramdhan Nugraha
eProceedings of Engineering Vol 6, No 2 (2019): Agustus 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Salah satu sistem keamanan berbasis biometrik adalah pengenalan wajah yang mengidentifikasi berdasarkan perbedaan ciri wajah. Oleh karena itu, setiap orang mempunyai ciri wajah masing-masing yang dapat digunakan sebagai kata sandi. Melalui penelitian ini kunci rumah dapat dikelola dengan menggunakan sebuah sistem keamanan rumah berbasis pengenalan wajah. Prototipe ini memiliki 2 sistem yaitu sistem otomasi dan sistem keamanan. Pada sistem otomasi ini, aplikasi Telegram dapat mengontrol modul relay untuk mengontrol lampu dan kunci rumah. Sedangkan pada sistem keamanan dapat mengontrol modul relay berdasarkan wajah yang dikenali. Jika diluar penghuni rumah mencoba masuk, maka sistem akan memberikan peringatan kepada pemilik rumah melalui telegram. Pengenalan wajah menggunakan OpenCV yang berbasis library open source untuk computer vision dan menggunakan metode Fisherface untuk ekstraksi ciri serta metode klasifikasi yang memakai bahasa pemrogaman Python. Secara keseluruhan tingkat akurasi sistem pada penelitian ini mencapai 98,5%. Hasil yang didapatkan dari penelitian ini menunjukkan bahwa kondisi cahaya terang dengan ekspresi senyum memiliki tingkat performansi yang terbaik, pencapaian tingkat akurasi sebesar 100% keberhasilan dengan rata-rata nilai confidence 20,06547 dan 2.6883 detik untuk ratarata waktu komputasi. Kata kunci : Raspberry Pi, Face Recognition, OpenCV, Fisherface, Telegram Abstract One of the biometric-based security systems is face recognition, based on differences in facial characteristics. Therefore everyone has their own characteristics that can be used as a password. Through this research, home locks can be managed using home security system based on facial recognition. This prototype has 2 systems, the automation system and the security system. In this automation system, Telegram applications can control relay modules to control lights and house key. The security system can control relay modules based on recognizable faces. If stranger trying to enter the house, the system will give a warning to the homeowner via telegram. Face recognition uses OpenCV based open source library for computer vision and uses the Fisherface method for extraction of features and classification methods that use the Python programming language. Overall the successful rate of the system reach 98.5%. The experiment of this research shows that bright light condition with smile expression gave the best result with 100% success with an average confidence value of 20.06547 and 2.6883 seconds for the average computing time. Keywords: Raspberry Pi, Face Recognition, OpenCV, Fisherface, Telegram
Sistem Otomatisasi Pelayanan Restoran Berbasis Android Bagus Ferian Chandra; Porman Pangaribuan; Ramdhan Nugraha
eProceedings of Engineering Vol 7, No 2 (2020): Agustus 2020
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Pada bagian pemesanan,.pelanggan dapat memesan melalui aplikasi pada smartphone berbasis android yang sudah disediakan oleh restroan yang sebelumnya sudah log-in dengan menulis nomor meja pelanggan. Setelah melakukan pemesanan, pesanan pelanggan tadi akan masuk ke server yang terdapat pada meja kasir. Setelah pesanan pelanggan sudah masuk ke server selanjutnya bagian dapur akan membuat pesanan tersebut. Setelah pesanan tersebut telah selesai dibuat oleh bagian dapur, selanjutnya pesanan tersebut diantarkan oleh robot line follower yang sudah di atur agar sampai ke meja pelanggan yang dituju menggunakan sistem barcode yang sudah ditempel di setiap meja pelanggan. Selanjutnya setelah pelanggan selesai menyantap hidangan sesuai dengan pesanannya, pelanggan dapat melakukan pembayaran melalui dua metode yaitu dengan uang tunai atau non-tunai yang dapat dilakukan di meja kasir. Pada aplikasi di smartphone juga, terdapat fitur admin yang berfungsi untuk melihat proses pesanan setiap pelanggan dan juga dapat melihat dan mengatur jumlah stok makanan yang tersedia di restoran. Kata Kunci: Aplikasi, Android ABSTRACT In the ordering section, the customer can order via an application on an Android-based smartphone that has been provided by the restaurant who has previously logged in by writing the customer's table number. After placing an order, the customer's order will go to the server at the checkout counter. After the customer order has entered the server, the kitchen will make the order. After the order has been made by the kitchen department, the order is then delivered by the line follower robot that has been arranged to arrive at the destination customer's table using a barcode system that has been affixed to each customer's table. Furthermore, after the customer has finished eating the dish according to his order, the customer can make payments through two methods, namely cash or non-cash which can be done at the cashier desk. In the application on smartphones too, there is an admin feature that functions to see the order process of each customer and You can also view and manage the amount of food stock available at the restaurant. Keywords: Application, android
Kendali Pergerakan Lengan Buatan Untuk Area Lengan Bawah Menggunakan Sinyal Emg Ilham Rabbani Des Chandra Aziz; Achmad Rizal; Ramdhan Nugraha
eProceedings of Engineering Vol 7, No 1 (2020): April 2020
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract The human hand is one of the most frequently used parts of the body's anatomy. For some jobs, hands are valuable assets. The good and bad performance of human hands is heavily influenced by the good control and coordination of thenerves and muscles. Unfortunately, not all humans are blessed with healthy hands. Various things ranging from diseases such as strokes, paralysis, to the results of amputations due to disease also cause human hands to lose their main function or even totally unusable. This research aims to make an artificial arm that can be controlled based on EMG signals for people with disabilities. EMG signal readings are done by attaching electrodesto specific points of the pronatorteres muscle in the forearm area. The results of the obtained muscle activity will be captured in the form of an EMG signal to then be processed until it reaches a certain reading frequency range for the captured signal. After reading, the signals will then extract characteristics that are used as parameters to conclude the movement obtained using the K Nearest Neighbor (KNN) algorithm in MATLAB and then continued by serial communication with the microcontroller to move the prosthetic arm. Through this research, the writer obtained 76.7% accuracy on the value of K = 3 based on the results of KNN training with Classification Learner in MATLAB. However, through predictions with the new test data the writer could only get 50% accuracy. This can be caused by various things such as the hidden muscle location, the area of muscle detection, and the measurement for Euclidian Distance on KNN in MATLAB which also carried out evenly against fellow training data.Keywords : nervous system, signal, EMG, prosthetic arm, serial communication, disabilities, KNN, Euclidian Distance.
Perancangan Lengan Robot Dengan 4 Derajat Kebebasan Untuk Sistem Kendali Berbasis Sensor Kinect Jidan Sandika Hidayat; Achmad Rizal; Ramdhan Nugraha
eProceedings of Engineering Vol 8, No 2 (2021): April 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Lengan robot terdiri dari sistem mekanik dan sistem kendali lengan robot. Sistem mekanik berfungsi sebagai wadah sistem penggerak pada lengan robot. Istilah lain sistem penggerak disebut dengan derajat kebebasan atau Degree Of Freedom (DOF) atau sering diartikan dengan joint. Lalu pada bagian sistem kendali lengan robot salah satu nya dapat menggunakan metode pengolahan citra menggunakan sensor Kinect. Sensor Kinect adalah teknologi perangkat lunak yang dapat mendeteksi sendi tubuh manusia dan melacak pergerakan nya. Pada sistem kendali lengan robot menggunakan sensor Kinect, perintah untuk menggerakkan lengan robot menjadi lebih mudah, cepat, dan tidak banyak komponen yang digunakan. Pada tugas akhir ini fokus di bagian sistem mekanik dan penggerak lengan robot, untuk sistem kendali berbasis sensor Kinect. Lengan robot dirancang menggunakan microcontroller Arduino Mega 2560 dan aktuator berupa empat motor servo yang dipasang pada joint base, shoulder, elbow, dan gripper. Hasil pada tugas akhir ini didapat pada keempat joint lengan robot base, shoulder, elbow, dan gripper masing-masing memiliki error akurasi sudut 33.6°, 4.8°, 4.3°, dan 0°. Lengan robot dapat bergerak mengikuti gerakan lengan manusia secara real time dengan memakan waktu rata-rata sebesar 402.37 milidetik pada delapan gerakan lengan yang telah diperagakan. Kata Kunci: lengan robot, 4 derajat kebebasan, sistem kendali berbasis sensor Kinect, Kinect Abstract The robot arm consists of a mechanical system and a robot arm control system. The mechanical system functions as a container for the motion system in the robot arm. Another term for a system of motion is called the Degree Of Freedom (DOF) or often interpreted as a joint. Then in the robot arm control system, one of which can use the image processing method using the Kinect sensor. Kinect sensor is a software technology that can detect the joints of the human body and track their movements. In a robot arm control system using a Kinect sensor, the command to move the robot arm becomes easier, faster, and uses less components. In this final project, the focus is on the mechanical system and the movement of the robot arm, for the Kinect sensor-based control system. The robot arm is designed using an Arduino Mega 2560 microcontroller and an actuator in the form of four servo motors mounted on the joint base, shoulder, elbow, and gripper. The results in this final project are obtained that the four joint robot arms base, shoulder, elbow, and gripper each have angle accuracy errors of 33.6°, 4.8°, 4.3°, and 0°. The robotic arm can move to follow the human arm movement in real time by taking an average of 402.37 milliseconds on the eight arm movements that have been demonstrated. Keywords: robot arm, 4 degrees of freedom, Kinect sensor-based control system, Kinect
PERANCANGAN SISTEM LAMPU PENERANGAN BERBASIS PANEL SURYA DI DESA ALAM ENDAH, CIWIDEY Porman Pangaribuan; Faisal Budiman; Ananda Risya Triani; Estananto Estananto; Ramdhan Nugraha
Prosiding COSECANT : Community Service and Engagement Seminar Vol 1, No 2 (2021)
Publisher : Universitas telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (279.536 KB) | DOI: 10.25124/cosecant.v1i2.17523

Abstract

Perancangan sistem lampu penerangan jalan berbasis tenaga surya telah dilakukan dan diimplementasikan di Desa Alam Endah, Ciwidey, Kabupaten Bandung. Sistem yang dirancang guna sebagai solusi dalam memenuhi ketersediaan lampu penerangan yang sifatnya untuk umum, sehingga dapat bermanfaat untuk masyarakat, khususnya di malam hari. Saat ini, sistem yang terpasang berjalan dan berfungsi dengan baik. Hasil kuosioner masyarakat menunjukkan bahwa kegiatan yang telah dilakukan sangat bermanfaat dan 87.5% dari total responden sangat setuju jika kegiatan ini dilanjutkan
Alat Ukur Indeks Massa Tubuh Portable berbasis Antropometri Telapak Kaki FAUZI, HILMAN; BARRI, MUHAMMAD HABLUL; SENJAYA, ARIO; ILHAM, MUHAMMAD; NUGRAHA, RAMDHAN
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 2: Published April 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i2.274

Abstract

ABSTRAKIndeks massa tubuh (IMT) merupakan sebuah nilai untuk menentukan proporsionalitas postur tubuh. Dengan indeks massa tubuh, seseorang dapat mengetahui kondisi tubuhnya tidak hanya mengenai proporsional posturnya, namun juga informasi mengenai resiko penyakit. Dalam menentukan IMT diperlukan data berat badan dan tinggi badan, sehingga dalam pengukurannya perlu dua alat ukur yang menyebabkan pengukuran ini menjadi kurang praktis. Pada penelitian ini diusulkan sebuah timbangan IMT portabel, dimana data tinggi badan diturunkan dari data panjang telapak kaki. Dalam pengukuran panjang telapak kaki, sensor jarak dilengkapi dengan sensor suhu sebagai parameter untuk memudahkan kalibrasi. Dari penelitian ini dihasilkan suatu alat ukur IMT dengan dimensi 500mmx200mmx60mm dengan akurasi sebesar 86,7%. Terdapat pengaruh lain selain panjang telapak kaki untuk mendapatkan prediksi tinggi badan yang lebih akurat, seperti lebar telapak kaki dan panjang kaki. Kata kunci: IMT, obesitas, antropometri telapak kaki, sensor jarak, sensor suhu ABSTRACTBody mass index (BMI) is a value to determine the proportionality of body posture. People can find out the condition of his body not only about his proportional posture but also the information about the risk of disease in determining BMI, weight, and height. Conventionally, the BMI can be measured by using two measuring tools, so it becomes less practical. A portable BMI scale is proposed in this study, where height data is derived from foot length data. In the process of measuring the foot length, the proximity sensor is equipped with a temperature sensor as a parameter to facilitate calibration This research resulted in a BMI measuring instrument with dimensions of 500mmx200mmx60mm with an accuracy of 86.7%. Besides foot length, there are other influences to get a more accurate prediction of height, such as foot width and foot length.Keywords: BMI, obesity, foot length anthropometry, proximity sensor, temperature sensor
Selection EEG Electrode Positions for Epilepsy Seizure Detection Using Total Power Spectrum and Machine Learning Afifah, Khilda; Istiqomah, Istiqomah; Rizal, Achamd; Nugraha, Ramdhan
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 6 No. 4 (2024): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v6i4.9

Abstract

Detecting epileptic seizures poses significant challenges due to the complex and variable nature of EEG signals, particularly when aiming for implementation in wearable devices. The use of 64-channel EEG electrodes, while comprehensive, is impractical for wearable applications due to their size, cost, and the high computational load required for processing. The use of a single-channel EEG wearable device offers notable advantages, including reduced size and cost, making it more practical and comfortable for continuous monitoring in daily life. Additionally, the lower computational load enhances battery life and allows for real-time data processing, which is critical for timely seizure detection and intervention. This research investigates the detection of epileptic seizures using various machine learning algorithms and the power spectrum feature extraction method from EEG signals, aiming for application in wearable devices with a single-channel electrode. The study applied random forest (RF), K-nearest neighbor (KNN), decision tree (DF), support vector mechine (SVM), and logistic regression algorithms to assess their effectiveness. Results revealed that the power spectrum extraction method notably improved seizure detection accuracy, with RF and KNN achieving 93% and 92% accuracy respectively when using all EEG channels. When limited to a single channel, SVM demonstrated the highest accuracy of 82% with channel 3. These findings underscore the efficacy of the power spectrum method for EEG signal processing, providing significant improvements in accuracy and computational efficiency. The study concludes that the proposed approach is promising for enhancing epileptic seizure detection, suggesting further optimization for real-time application in wearable devices to develop accurate and efficient diagnostic tools.
A Fuzzy-Based Spatial Condition Detection System Using Square Area Mapping to Support The Mobility of Individuals with Visual Impairments Supriyadi, Tata; Solihin, Ridwan; Habinuddin, Endang; Sudrajat, Sudrajat; Utomo, TB; Setiadi, Budi; Nugraha, Ramdhan
International Journal of Engineering Continuity Vol. 4 No. 1 (2025): ijec
Publisher : Sultan Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58291/ijec.v4i1.395

Abstract

This research developed, designed, and implemented a cane prototype with the ability to identify spatial conditions, which can help the mobility of blind people in the form of decision information on choosing a path that is free from obstacles. The electronic space sensing system uses ultrasonic-type non-contact/non-visual sensors. Ultrasonic sensors are installed at three points: left, front, and right (L, F, R) of the stick. When the stick swings left-right or vice versa, each sensor will produce an array of distance data and then average it. The average distance of each point is calculated by the Left Side Square Area (LSSA) and Right Side Square Area (RSSA). The LSSA and RSSA values ​​are used as fuzzy input, a fuzzy inference process is carried out using a rule base, and defuzzification is used for decision output on the microcontroller. The system translates the decision results into sound (beep) and vibration information for the user. The results of the second experiment with blind people in two different scenarios show that the system can be an effective support during mobility in the hall and is a feasible prototype for training blind people with new O&M techniques towards the use of travel aids.
Co-Authors Achmad Rizal Adelia Pramita Dewi Aditya Eka Putra Afdalul Azmi Agung Surya Wibowo Ali Akhmad Ghifari Allbowaghis Di-Gandra Kheirisko Amelia Emara Ananda Risya Triani Andria Sufy Angga Rusdinar Anugrah Ikhsani Yusuf Aradea Putra Pangestu Ardhan Dwi Meirika Surachman Ardhan Dwi Meitrika Surachman Arief Yulian Prabowo Azhar Kurniana Azmi Rasyid Bagus Ferian Chandra Bayu Satya Adhitama Budi Setiadi, Budi Cahyantari Ekaputri Danish Ario Wirawan Devha Parsaoran Sinaga Dhiky Wahyu Santoso Dodhy Fernando Ginting Erwin Susanto Estananto Evan Dwi Septiawan Faisal Budiman Faisal Nugraha Putra Faisal Pakpahan Faishal Adli Fajrin Noor Rachman Fareza Rizky Ramadhan Fauzan Dwi Septiansyah Fiky Y. Suratman Firman Ardiansyah Ghifari Fathurrahman Habinuddin, Endang Hilman Fauzi, Hilman Himawan Setiadi Ig. Prasetya Dwi Wibawa Ilham Rabbani Des Chandra Aziz Indra Gunawan Saputra Istiqomah Ivan Fauzi Islami Jidan Sandika Hidayat Khikmah Nur Dwi Nofanti Khilda Afifah Leanna Vidya Yovita M Wildan Firdaus M. Ary Murti Mas Sarwoko Suraatmadja Mohamad Ramdhani Mohammad Ramdhani Muh Abdul Latif Muhammad Aditya Taufik Muhammad Fadel Nugraha Muhammad Fayyadh Muhammad Hablul Barri Muhammad Ilham Muhammad Iqbal Muhammad Raihan Ghifari Muhammad Rio Chandra Nur Ibrahim Pitung Abdullah Sutowijoyo Porman Pangaribuan Ramdhani, Mohammad Rezky Andrianto Ridwan Solihin Rifqi Amir Hamzah Rita Magdalena Salim Abdullah Samuel Febrikab Dwiprasetiabudhi SENJAYA, ARIO Seno Nugroho Sepfrans Josua Hutasoit Sigit Yuwono Sony Sumaryo Sudrajat Sudrajat Supriyadi, Tata Surachman, Ardhan Dwi Meirika Unang Sunarya Utomo, TB Vika Audina Matitaputty Yudhi Triarnowo Yulianto Dwi Nurul Haqqi