p-Index From 2020 - 2025
9.479
P-Index
Claim Missing Document
Check
Articles

MODEL PENJADWALAN PROYEK PEMBANGUNAN PERUMAHAN MENGGUNAKAN PETRI NET DAN ALJABAR MAX-PLUS. Moh Dody Afandi Rauf; Nurwan Nurwan; Lailany Yahya; Agusyarif Rezka Nuha
Jurnal Edukasi dan Sains Matematika (JES-MAT) Vol 7, No 1 (2021): Jurnal Edukasi dan Sains Matematika (JES-MAT)
Publisher : Department of Mathematics Education, Universitas Kuningan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (691.872 KB) | DOI: 10.25134/jes-mat.v%vi%i.3517

Abstract

Penjadwalan adalah kegiatan untuk menentukan waktu yang dibutuhkan dan urutan kegiatan serta menentukan waktu proyek dapat diselesaikan. Aljabar Max-plus merupakan salah satu metode yang bisa digunakan dalam menyelesaikan masalah penjadwalan. Tujuan penelitian ini yaitu untuk mengetahui model Aljabar Max-plus dalam pembangunan perumahan dan waktu optimum dalam menyelesaikan proyek pembangunan perumahan. solusi optimal waktu dalam pembangunan perumahan. Penelitian menggunakan metode Analisis data dengan menggunakan studi literatur dan pengumpulan data. Pada penelitian ini menggunakan data primer. Adapun prosdur dalam penelitian ini yaitu mengambil data pembangunan peumahan, membuat alur petri net, mencari model Aljabar Max-plus, membuat matriks Aljabar Max-plus, mengolah data, dan mencari jalur kritis. Hasil penelitian diperoleh waktu optimal meggunakan analisis model Aljabar Max-plus yaitu selama 62 hari.
Bilangan Terhubung Titik Pelangi pada Graf Hasil Operasi Korona Graf Prisma (P_(m,2)) dan Graf Lintasan (P_3) Indrawati Lihawa; Sumarno Ismail; Isran K Hasan; Lailany Yahya; Salmun K Nasib; Nisky Imansyah Yahya
Jambura Journal of Mathematics Vol 4, No 1: January 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1474.15 KB) | DOI: 10.34312/jjom.v4i1.11826

Abstract

Rainbow vertex-connection number is the minimum k-coloring on the vertex graph G and is denoted by rvc(G). Besides, the rainbow-vertex connection number can be applied to some special graphs, such as prism graph and path graph. Graph operation is a method used to create a new graph by combining two graphs. Therefore, this research uses corona product operation to form rainbow-vertex connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2). The results of this study obtain that the theorem of rainbow vertex-connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2) for 3 = m = 7 are rvc (G) = 2m rvc (G) = 2.
Analisis Dinamik Model Transmisi COVID-19 dengan Melibatkan Intervensi Karantina Resmawan Resmawan; Agusyarif Rezka Nuha; Lailany Yahya
Jambura Journal of Mathematics Vol 3, No 1: January 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.878 KB) | DOI: 10.34312/jjom.v3i1.8699

Abstract

ABSTRAKMakalah ini membahas dinamika transmisi COVID-19 dengan melibatkan intervensi karantina. Model dikonstruksi dengan melibatkan tiga kelas penyebab infeksi, yaitu kelas manusia terpapar, kelas manusia terinfeksi tanpa gejala klinis, dan kelas manusia terinfeksi disertai gejala klinis. Variabel yang merepresentasikan intervensi karantina untuk menekan pertumbuhan infeksi juga dipertimbangkan pada model. Selanjutnya, analisis model difokuskan pada eksistensi titik kesetimbangan dan simulasi numerik untuk menunjukkan dinamika populasi secara visual. Model yang dikonstruksi membentuk model SEAQIR yang memiliki dua titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit bersifat stabil asimtotik lokal pada saat R01 dan tidak stabil pada saat R01. Simulasi numerik menunjukkan bahwa peningkatan intervensi berupa karantina dapat berkontribusi memperlambat transmisi COVID-19 sehingga diharapkan dapat mencegah terjadinya wabah pada populasi.ABSTRACTThis paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R01 and unstable at R01. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.
Pengaruh Penggunaan Media Berbasis Information and Communication Technology (ICT) terhadap Hasil Belajar Siswa pada Materi Dimensi Tiga Djihad Wungguli; Lailany Yahya
Jambura Journal of Mathematics Education Vol 1, No 1: Maret 2020
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jmathedu.v1i1.5376

Abstract

These paper have purposed to know the difference of result between the students that have learned by using IT and the students who had subject follow by using conventional learning method in dimension three subject. The research method used in this study is an experimental method using Posttest-Only Control Group Design. The results showed that the average learning outcomes of students who get learning by using ICT media is higher than the average learning outcomes of students who get learning by using conventional learning models on the three-dimensional material.
Upaya Pemberdayaan Masyarakat Melalui Pengelolaan Sumber Daya Pesisir Lailany Yahya; Masra Latjompoh
Jurnal Sibermas (Sinergi Pemberdayaan Masyarakat) Vol 8, No 3 (2019): Jurnal Sbermas (Sinergi Bersama Masyarakat)
Publisher : Univeristas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/sibermas.v8i3.8266

Abstract

Pemberdayaan masyarakat adalah upaya untuk membuat masyarakat berperan aktif dalam aktivitas social. Tujuan yang ingin dicapai pada kegiatan Kuliah Kerja Nyata (KKN) Tematik adalah meningkatnya pengetahuan dan partisipasi aktif masyarakat desa dalam memanfaatkan potensi desa sebagai upaya meningkatkan ekonomi masyarakat dan pengelolaan lingkungan hidup yang sehat. Target khusus kegiatan, yaitu: (1) peningkatan kesadaran masyarakat dalam mengelola potensi sumber daya alam lokal masyarakat pesisir, (2) terwujudnya kelestarian lingkungan masyarakat desa. Metode kegiatan KKN tematik ini adalah metode workshop dalam bentuk pelatihan dan pendampingan pada masyarakat melalui pelatihan pengembangan produk kerajinan tangan dan usaha masyarakat secara intensif sehingga tercapai seluruh target dan luaran yang diharapkan melalui pelaksanaan kegiatan KKN tematik ini dapat meningkatkan ekonomi masyarakat pesisir.
Analisis dinamik model predator-prey tipe Gause dengan wabah penyakit pada prey Rusdianto Ibrahim; Lailany Yahya; Emli Rahmi; Resmawan Resmawan
Jambura Journal of Biomathematics (JJBM) Volume 2, Issue 1: June 2021
Publisher : Department of Mathematics, State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v2i1.10363

Abstract

This article studies the dynamics of a Gause-type predator-prey model with infectious disease in the prey. The constructed model is a deterministic model which assumes the prey is divided into two compartments i.e. susceptible prey and infected prey, and both of them are hunted by predator bilinearly. It is investigated that there exist five biological equilibrium points such as all population extinction point, infected prey and predator extinction point, infected prey extinction point, predator extinction point, and co-existence point. We find that all population extinction point always unstable while others are conditionally locally asymptotically stable. Numerical simulations, as well as the phase portraits, are given to support the analytical results.
Analisis Dinamik Model Penyebaran COVID-19 dengan Vaksinasi Resmawan Resmawan; Lailany Yahya; Revandi S. Pakaya; Hasan S. Panigoro; Agusyarif Rezka Nuha
Jambura Journal of Biomathematics (JJBM) Volume 3, Issue 1: June 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v3i1.13176

Abstract

Coronavirus Disease 2019 (COVID-19) is a new type of virus from a large family of viruses transmitted between humans and animals (zoonotically transmitted) that was first discovered in Wuhan City, Hubei Province, China in late 2019 which is still widespread and threat throughout the world including Indonesia. This article discussed about the mathematical model of the spread of COVID-19 with vaccinations. In this case, the human population is divided into 5 classes, namely the suspected, vaccine, exposed, infected and recovered classes. The constructed model forms an SVEIR model that has two equilibrium points, namely disease-free and endemic equilibrium points. Stability analysis shows that the equilibrium point is stable local and global asymptotic if R0 1 and unstable if R0 1. Then a sensitivity analysis was carried out to determine the parameters that greatly affect the model as well as furthermore, numerical simulations are given to describe the behavior of the model that has been obtained based on the analysis of the sensitivity of basic reproductive numbers, obtained several parameters that affect the spread of COVID-19. Numerical simulation results show that vaccination can suppress the addition of infected populations and depend on the level of effectiveness of vaccination.
Bilangan Terhubung Titik Pelangi Kuat Graf Octa-Chain (OCm) Nisky Imansyah Yahya; Karina Anselia Mamonto; Nurwan Nurwan; Lailany Yahya; Djihad Wungguli; La Ode Nashar
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 10 Issue 1 June 2022
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/euler.v10i1.15177

Abstract

An Octa-Chain graph (OCm) is a graph formed by modifying the cycle graph C8 by adding an edge connecting the midpoints in C8. The minimum number of colors used to color the vertices in a graph so that every two vertices have a rainbow path is called the rainbow vertex-connected number denoted by rvc (G). While the minimum number of colors used to color the vertices in a graph so that every two vertices are always connected by a rainbow path is called a strong rainbow vertex connected number and is denoted by srvc (G). This study aims to determine the rainbow vertex-connected number (rvc) and the strong rainbow-vertex-connected number (srvc) in the Octa-Chain graph (OCm). The results obtained from this research are the rainbow vertex-connected number rvc (OCm)=2m and the strong rainbow-vertex-connected number srvc (OCm)=2m.
BILANGAN TERHUBUNG PELANGI PADA GRAF SALJU (Sn_m) Cindy Aisa Putri Noor; Lailany Yahya; Salmun K Nasib; Nisky Imansyah Yahya
Journal of Fundamental Mathematics and Applications (JFMA) Vol 4, No 1 (2021)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2065.745 KB) | DOI: 10.14710/jfma.v4i1.9035

Abstract

Suatu graf dikatakan terhubung pelangi jika terdapat lintasan antara dua titik yang setiap sisi-sisinya memiliki warna berbeda. Misalkan terdapat suatu graf G tak trivial dengan definisi warna c:E(G)->{1,2,3,...}, maka bilangan terhubung pelangi dari graf G yaitu minimum k dari pewarnaan-k  pelangi yang digunakan untuk mewarnai graf G dan dinotasikan dengan rc(G). Tujuan dari penelitian ini yaitu untuk menentukan bilangan terhubung pelangi pada graf salju (Sn_m). Metode yang digunakan pada penelitian ini yaitu metode studi literatur dengan prosedur sebagai berikut; menggambar graf salju, mencari pola bilangan terhubung pelangi, dan membuktikan teorema bilangan terhubung pelangi pada graf salju (Sn_m). Sehingga diperoleh rc(Sn_m)=m+1 untuk 3<=m<=7 dan m={9,10} dan rc(Sn_m)=m untuk m=8 dan m>=11.
Efektivitas Pembelajaran Matematika Menggunakan Multimedia pada Materi Kerucut Prasetyo Usman; Lailany Yahya; Nursiya Bito; Bertu Rianto Takaendengan
Jambura Journal of Mathematics Education Vol 3, No 2: September 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jmathedu.v3i2.10628

Abstract

This is descriptive research which aims to describe the effectiveness of learning by using multimedia in the cone materials of class IX MTs Al-Khairat Kwandang in the academic year 2019/2020 in terms of (1) the ability of teachers to manage learning, (2) positive student responses to learning, and (3) student learning outcomes test. Based on the analysis and discussion results, it can be concluded that learning mathematics using multimedia on cone material is effective. This is indicated by the ability of teachers to manage to learn has been categorized as very good, student responses in every aspect during the learning process are categorized as very positive, and the completeness of learning outcomes has reached 80% classically.
Co-Authors Abdul, Nur Safitri Agusyarif Rezka Nuha Akolo, Ingka Rizkiyani Aliwu, Randa Resvitasari Alvitha Habibie Anisa, Lia Nur Anissa Dwi Wijayanti Armayani Arsal Barham, Siti Maryam Bertu Rianto Takaendengan Cindy Aisa Putri Noor D Une, Putri Mutia Dewi Rahmawaty Isa Djihad Wungguli FAHREZAL ZUBEDI Franky Alfrits Oroh Harun, Artika Rahayu Hasan S. Panigoro Hendro Budi Santoso Herlina Jusuf Ifan Wiranto Indrawati Lihawa Ingka Rizkiyani Akolo Ismail Djakaria Ismail, Minton Isran K Hasan Jusuf, Anryan Karina Anselia Mamonto Kartin Usman Kasim, Miranti H. Kasim, Rahmat Rajib Kaune, Nurlaila Kiayi, Fuji Fauzia Kobandaha, Putri Ekawaty La Ode Nashar Ladjali, Sri Indriani Laita, Nazrilla Hasan Mahading, Tria Susilowati Mahmud, Sri Lestari Majid Masra Latjompoh Melasarah Deswita Rahmadi Moh Dody Afandi Rauf Mohamad, Regina Muftih Alwi Aliu Nancy Katili Naue, Siti Nurmeylisya Nikmatisni Arsad NISKY IMANSYAH YAHYA Novianita Achmad Nurdin, Sri Ayu Nurhayati Abbas Nursiya Bito Nurwan Nurwan Nurwan, Nurwan Olii, Isran R. Perry Zakaria Prasetyo Usman Putri Ayuningtias Mahdang Rahman, Yulinar Rahmi, Emli Ramadiana, Anastasya Randi Mooduto Rasmawati Rasmawati Rauf, Moh Dody Afandi Resmawan Resmawan Revandi S. Pakaya Rusdianto Ibrahim Salmun K. Nasib Sari, Lia Nanda Sari, Septi Rahmita Sembiring, Rinawati Siti Nurmardia Abdussamad Sitria Jemin Sri Maryam Mohungo Sri Meylanti S. Ali Sumarno Ismail Syamsu Qomar Badu Tedy Machmud Tiara Posangi Tiarawati, Ni Wayan Tria Susilowati Mahading Utina, Fitriani Windharta Oei, Smily Yusuf, Putria Zulmagfir Buako