Claim Missing Document
Check
Articles

Found 13 Documents
Search
Journal : Building of Informatics, Technology and Science

Klasifikasi Penerima Bantuan Beras Miskin Menggunakan Algoritma K-NN, NBC dan C4.5 Pristiawati, Andani Putri; Permana, Inggih; Zarnelly, Zarnelly; Muttakin, Fitriani
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3617

Abstract

One of the tasks of the Dumai City Social Service is to provide poor rice assistance to people in need. The problem that often occurs in the distribution of rice to the poor is that the target recipients of poor rice often occur. In overcoming the existing problems, this research has carried out classification models using the K-Nearest Neighbor (K-NN) algorithm, Naïve Bayes Classifier (NBC), and C4.5 Algorithm. Based on the experimental results, it was found that the best classification model was produced by the K-NN Algorithm with a value of K equal to 21. Besides that, the C4.5 algorithm succeeded in making a decision tree for the classification model with the lowest complexity because it succeeded in reducing the number of attributes from 33 to 5 attributes. The decision tree can be used as material for consideration to the Social Service in making decisions on Raskin beneficiaries.
Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook Nurkholis, Nurkholis; Permana, Inggih; Salisah, Febi Nur; Mustakim, Mustakim; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6082

Abstract

In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.
Perbandingan Algoritma Support Vector Machine dan Naïve Bayes dalam Menganalisis Sentimen Pinjaman Online di Twitter Ikhsani, Yulia; Permana, Inggih; Salisah, Pebi Nur; Mustakim, Mustakim; Rozanda, Nesdi Evrilyan
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6106

Abstract

Unemployment is one of the poverty factors in society, the large economic needs make it difficult for people to meet their daily needs, thus triggering high demand for loans in society. With the advancement of technology, online loans are now available to help people meet their economic needs. However, over time, many irresponsible parties have taken advantage of this. Marked by the emergence of many illegal online loans, which have triggered negative impacts such as the spread of customer personal data, terror on social media, to debt collection using debt collectors. So that it raises a lot of sentiment in society regarding online loans. For this reason, it is necessary to conduct a sentiment analysis with the aim of public response to online loans, which can be positive, negative or neutral responses. There are two datasets used, namely legal online loans and illegal online loans. This study uses two algorithms, namely SVM and Naive Bayes, the two algorithms will be compared to find out which algorithm is better at analyzing online loan sentiment. In addition, in its use, the two algorithms will also use the SMOTE technique to stabilize the data. The results obtained on legal loan data classification using SVM are quite better than Naive Bayes, with an accuracy rate of 69% with sentiment that often appears is positive sentiment. For illegal loan data, classification using the Naive Bayes algorithm is better than SVM with an accuracy of 75% and sentiment that often appears is neutral sentiment. Based on these results, it can be concluded that in analyzing sentiment using legal loan data, the best algorithm is the SVM algorithm, and for illegal loan data, the best algorithm is the Naive Bayes algorithm.
Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine Ramadhani, Annisa; Permana, Inggih; Afdal, M; Fronita, Mona
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6188

Abstract

Indonesia faces a serious challenge related to stunting, with rates reaching 21% in 2024, although this represents a decrease from 24% in 2021. In response, the government has launched various programs to address this issue, including nutrition education, health check-ups for pregnant women, and supplementary food provisions. Amid these efforts, the proposed free lunch program aims to improve nutritional quality for children and pregnant women. However, this program has sparked controversy over the required budget, estimated at IDR 450 trillion, which could impact the national budget balance and lead to inflation.This study analyzes public sentiment toward the free lunch program using the Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. An analysis of 1,028 tweets revealed that negative sentiment predominates at 44.84%, followed by positive sentiment (32.39%) and neutral sentiment (22.76%). SVM outperformed NBC with an accuracy of 75.39%, compared to NBC's 68.97%. The findings provide important insights into public perceptions of the program and highlight the need for further research to improve sentiment analysis methodologies.
Prediksi Produksi Kelapa Sawit Menggunakan Algoritma Support Vector Regression dan Recurrent Neural Network Alfakhri, Rezky; Permana, Inggih; Novita, Rice; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6441

Abstract

Oil palm is one of the important plantation crops and a leading commodity in Indonesia. PT. XYZ is a company engaged in receiving Fresh Fruit Bunches (FFB) to be processed into Crude Palm Oil (CPO) and Palm Kernel (PK). So far, the company has conducted statistical analysis with a correction value of 5% - 12% on the production results each month in targeting production results. However, this method is still lacking, because it uses manual calculations and considers estimates from personal experience. Therefore, this research proposes a data mining technique with Support Vector Regression (SVR) and Recurrent Neural Network (RNN) algorithms to predict production output precisely. In this study, testing was carried out on SVR hyperparameters, namely Kernel, C, Gamma, and Epsilon. While in RNN, testing is carried out on the optimizer, and the learning rate. In addition, the window size is also determined through a series of experiments, namely 3, 5, and 7. The comparison results show that the RNN model outperforms SVR with an RMSE value of 0.0928, MAPE of 14.32%, and R2 of 0.6164. The RNN model was then implemented to predict the next 3-month period. The prediction results show that there will be a significant increase in production in the first month, then a slight decrease in the second month, and an increase again in the third month.
Klasifikasi Penerima Bantuan Program Indonesia Pintar (PIP) Pada Siswa SMK Menggunakan Algoritma KNN, NBC dan C4.5 Putra, Tandra Adiyatma; Permana, Inggih; Zarnelly, Zarnelly; Megawati, Megawati
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6395

Abstract

The Indonesia Smart Program (PIP) is a government initiative aimed at providing educational assistance to students from underprivileged families. This research was conducted at SMKN 4 Pekanbaru to enhance the accuracy of distributing PIP aid using data mining methods. Three classification algorithms were used to identify students eligible for assistance: K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), and C4.5. The data used in this study included attributes such as parental occupation, income, and the type of transportation used. The data processing involved cleaning, normalization, and splitting into test and training sets. The results showed that the KNN algorithm performed best with an accuracy of 84.20%, precision of 89.83%, and recall of 99.18%. The C4.5 algorithm excelled in model simplicity, while NBC showed less optimal results compared to KNN.
Klasifikasi Sentimen Pengguna X Terhadap Pemboikotan Produk Pro Israel Menggunakan Algoritma Machine Learning Susanti, Pingki Muliya; Afdal, M; Permana, Inggih; Marsal, Arif
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6533

Abstract

The campaign to boycott pro-Israel goods emerged as a result of the enduring conflict between Israel and Palestine. This boycott initiative led to a decline in sales, which adversely impacted the livelihoods of employees, manifesting in diminished bonuses, salary reductions, and job terminations. Such actions elicited a variety of reactions from the public on platform X. This study seeks to categorize the sentiments of X users regarding the boycott of pro-Israel products by comparing the efficacy of Machine Learning algorithms, namely Support Vector Machine and Random Forest. To address the class imbalance within the dataset, this research employs the synthetic minority over-sampling technique (SMOTE). The dataset comprised 2,275 entries, gathered through web scraping methods on the X platform. The findings indicate that a majority of X users in Indonesia endorse the boycott movement, exhibiting a positive sentiment of 58%. The SVM algorithm, when combined with SMOTE, demonstrated the highest performance in sentiment classification, achieving an accuracy of 90.54%, whereas Random Forest attained an accuracy of only 83.1%. This research offers insights into the views of the Indonesian populace regarding the boycott of pro-Israel products.
Analisis Sentimen Terhadap Program Makan Bergizi Gratis Menggunakan Algoritma Machine Learning Pada Sosial Media X Triningsih, Elsa; Afdal, M; Permana, Inggih; Rozanda, Nesdi Evrilyan
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6534

Abstract

The government has launched the Free Nutritious Meal Program as part of a strategic effort to reduce stunting in Indonesia. However, the program has generated a lot of controversy among the public, especially regarding the large budget allocation that is considered burdensome and its impact on the education sector and the country's financial stability. This study aims to analyze public sentiment towards the program by utilizing data from social media platform X (Twitter) as much as 2,400 data. Public sentiment is classified into three categories, namely positive, negative, and neutral, using two machine learning algorithms, namely Support Vector Machine (SVM) and Random Forest. In addition, the SMOTE technique is used to handle data imbalance in the model training process. The analysis results showed that negative sentiments dominated at 46%, with the main issue highlighted being the high budget allocation and its impact on education. In terms of performance, the SVM algorithm with SMOTE produced the highest accuracy of 85.74%, outperforming the Random Forest algorithm which only achieved 81.53% accuracy.
Analisa Sentimen Pengguna Aplikasi DANA Pada Ulasan Google Play Store Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neighbors Sabillah, Dian Ayu; Afdal, M; Permana, Inggih; Muttakin, Fitriani
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.7861

Abstract

The use of digital wallets such as DANA in Indonesia continues to increase along with the need for fast and practical non-cash transactions. User reviews on the Google Play Store are an important source of information to assess satisfaction and service problems. This study aims to classify user sentiment towards the DANA application using the Naïve Bayes Classifier (NBC) and K-Nearest Neighbor (KNN) algorithms. A total of 1,000 reviews were collected and processed through text cleaning, tokenization, stopword removal, and stemming. Sentiments were classified into positive, neutral, and negative using the lexicon method and expert validation. The results showed that NBC was superior to KNN, with the highest accuracy of 71.83%, while KNN only reached 56.44%. NBC was also more effective in detecting negative sentiment, although both were less than optimal for neutral sentiment. Word cloud visualization displays the dominant words in each sentiment category. The conclusion of this study states that Naïve Bayes is more effective in analyzing sentiment reviews of digital wallet applications such as DANA.
Perbandingan Performa Algoritma SVR, LSTM, dan SARIMA dalam Peramalan Produksi Kelapa Sawit Hendri, Desvita; Permana, Inggih; Salisah, Febi Nur; Afdal, M; Megawati, Megawati; Saputra, Eki
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7170

Abstract

Oil palm production in Indonesia fluctuates significantly due to various factors such as weather, soil fertility, and fruit bunch condition. These changes These changes have an impact on price stability, supply and planning for the palm oil industry. industry planning. Therefore, to improve decision-making in this industry, an accurate forecasting method is required to improve decision-making regarding distribution. appropriate decision-making regarding distribution. This study aims to compare the performance of three machine learning-based forecasting methods, namely Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and Seasonal Autoregressive Integrated Moving Average (SARIMA), in predicting palm oil production based on historical data for the last 10 years obtained from PTPN V Riau. The evaluation results show that the SVR model with a linear kernel provides the best performance with an MSE value of 4.1718. with MSE 4.1718, RMSE 0.0020, MAE 0.0018, MAPE 0.2014% and R2 0.9988. The SVR model provides superior prediction results compared to LSTM and SARIMA. with LSTM and SARIMA in forecasting palm oil production. This research is expected to make a real contribution in the development of a more reliable prediction system, thus supporting operational efficiency and stability of the palm oil industry in Indonesia. stability of the palm oil industry in Indonesia.
Co-Authors Aditya Nugraha Yesa Agus Buono Ahsyar, Tengku Khairil Al Kiramy, Razanul Alfakhri, Rezky Andaranti, Arifah Fadhila Andi Darlianto Andriyani, Dwi Ratna Anggi Widya Atma Nugraha Anggia Anfina Anisah Fitri Anjani, Yulia Merry Annisa Ramadhani Aprijon Arif Marsal Arif Marsal Arifin, Abdullah Aufa Zahrani Putri Aulia Dina Bib Paruhum Silalahi Dedi Pramana Dessi Cahyanti Detha Yurisna Detha Yurisna Dzul Asfi Warraihan Eka Pandu Cynthia Eki Saputra Eki Saputra Endah Purnamasari Esis Srikanti Fadhilah Syafria Fadil Rahmat Andini Farahdina Risky Ramadani Febi Nur Salisah Fiki Fikri, M. Hayatul Fitriah, Ma’idatul Fitriah, Ma’idatul Fitriani Muttakin Fitriani Muttakin Gurning, Umairah Rizkya Hafiz Aryan Siregar Hasbi Sidiq Arfajsyah Hendri, Desvita Hilda Mutiara Nasution Husaini, Fahri Idria Maita Idria Idriani R, Nova Ikhsani, Yulia Imam Muttaqin Intan, Sofia Fulvi Ismail Marzuki Jazman , Muhammad Jazman, Muhammad Kusuma, Gathot Hanyokro M Afdal M Afdal M Zaky Ramadhan Z M. Afdal M. Afdal M. Afdal M. Afdal M. Afdal Maulana, Rizki Azli Megawati Megawati - Mona Fronita, Mona Muhammad Afdal Muhammad Fikry Muhammad Jazman Muhammad Jazman Muhammad Naufal, Muhammad Muhammad Zacky Raditya Mukmin Siregar Mundzir, Mediantiwi Rahmawita Munzir, Medyantiwi Rahmawita Mustakim Mustakim Mustakim Mustakim Mustakim Mustakim Mutia, Risma Muttakin, Fitriani Nabillah, Putri Nardialis Nardialis Nasution, Nur Shabrina Naufal Fikri, R. Adlian Negara, Benny Sukma Nesdi Evrilyan Rozanda Nesdi Evrilyan Rozanda Nisa', Sayyidatun Norhavina Norhavina Nunik Noviana Kurniawati Nurainun Nurainun Nuraisyah Nuraisyah Nurfadilla, Nadia Nurkholis Nurkholis nursalisah, febi Octavia, Sania Fitri Pratama, Arya Yendri Priady, Muhamad Ilham Pristiawati, Andani Putri Puput Iswandi Putra, Moh Azlan Shah Putra, Tandra Adiyatma Rahman, Eman Rahmawita M, Medyantiwi Rangga Arief Putra Rayean, Rival Valentino Restu Ramadhan Ria Agustina Rice Novita Rice Novita Rizka Fitri Yansi Rizki Pratama Putra Agri Rozanda, Nesdi Evrilyan Sabillah, Dian Ayu Saeed, Alabbas Hussein Salisah, Pebi Nur Sania Fitri Octavia Sanusi Shir Li Wang Siti Monalisa Susanti, Pingki Muliya Tasya Marzuqah Tengku Khairil Ahsyar Triningsih, Elsa Tshamaroh, Muthia Uci Indah Sari Ula, Walid Alma Vicky Salsadilla Wenda, Alex Wido Purnama Winda Wahyuti Windy Amelia Putri Wira Mulia, M. Roid Yusmar Yusmar Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly Zarnelly