Claim Missing Document
Check
Articles

TRANSESTERIFICATION OF VEGETABLES OIL USING SUBAND SUPERCRITICAL METHANOL Nyoman Puspa Asri; Siti Machmudah; Wahyudiono Wahyudiono; Suprapto Suprapto; Kusno Budikarjono; Achmad Roesyadi; Mitsuru Sasaki; Motonobu Goto
Reaktor Volume 14, Nomor 2, Oktober 2012
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (113.746 KB) | DOI: 10.14710/reaktor.14.2.123-128

Abstract

A benign process, non catalytic transesterification in sub and supercritical methanol method was usedto prepare biodiesel from vegetables oil. The experiment was carried out in batch type reactor (8.8 mlcapacity, stainless steel, AKICO, JAPAN) by changing the reaction condition such as reactiontemperature (from 210°C in subcritical condition to 290°C in supercritical state with of 20°Cinterval), molar ratio oil to methanol (1:12-1:42) and time of reaction (10-90 min). The fatty acidmethyl esters (FAMEs) content was analyzed by gas chromatography-flame ionization detector (GCFID).Such analysis can be used to determine the biodiesel yield of the transesterification. The resultsshowed that the yield of biodiesel increases gradually with the increasing of reaction time atsubcritical state (210-230oC). However, it was drastically increased at the supercritical state (270-290oC). Similarly, the yield of biodiesel sharply increased with increasing the ratio molar of soy oilmethanolup to 1:24. The maximum yield 86 and 88% were achieved at 290oC, 90 min of reaction timeand molar ratio of oil to methanol 1:24, for soybean oil and palm oil, respectively.Proses transesterifikasi non katalitik dengan metanol sub dan superkritis,merupakan proses yang ramah lingkungan digunakan untuk pembuatan biodiesel dari minyak nabati.Percobaan dilakukan dalam sebuah reaktor batch (kapasitas 8,8 ml, stainless steel, AKICO, JAPAN),dengan variabel kondisi reaksi seperti temperatur reaksi (dari kondisi subkritis 210°C-kondisisuperkritis 290°C dengan interval 20°C), rasio molar minyak-metanol (1:12-1:42) dan waktu reaksi(10-90 menit). Kandungan metil ester asam lemak (FAME) dianalisis dengan kromatografi gasdengan detektor FID (GC-FID). Hasil Analisis tersebut dapat digunakan untuk menentukan yieldbiodiesel dari proses transesterifikasi. Hasil penelitian menunjukkan bahwa yield biodiesel meningkatsecara perlahan dengan meningkatnya waktu reaksi pada keadaan subkritis (210-230oC). Namun,yield biodiesel meningkat secara drastis pada kondisi superkritis (270-290oC). Demikian pula halnyadengan rasio molar minyak kedelai-metanol, dimana hasil biodiesel meningkat tajam denganmeningkatnya rasio molar minyak-metanol hingga 1:24. Yield maksimum dicapai pada 290oC, waktureaksi 90 menit dan rasio molar minyak terhadap metanol 1:24, yaitu sebesar 86% untuk minyakkedelai dan 88% untuk minyak sawit. 
EFEKTIFITAS KATALIS Co/Mo PADA HYDROCRACKING MINYAK NYAMPLUNG Rismawati - Rasyid; Ricco Aditya S. W; Devita Dian.L; Mahfud Mahfud; Achmad Roesyadi
Reaktor Volume 15 No.4 Oktober 2015
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (700.191 KB) | DOI: 10.14710/reaktor.15.4.268-273

Abstract

THE EFFECTIVTY OF Co/Mo CATALYSTS IN HYDROCRACKING OF NYAMPLUNG OIL. Hydrocracking process of Nyamplung Oil was presented using Co and Mo as metal catalysts. Ratio of CoMo metals in catalysts, can give better catalytic activity for Nyamplung Oil conversion. In this process, we used Co/Mo ratio (0.264/0.64), (0.62/1.61), and (1.23/3.22) towards SiO2 dan γ-Al2O3. This catalyst has made by wet impregnation method with drying temperature at 383 K during 8 hours and was calcined at 773 K for 5 hours. This catalyst was characterized by X-Ray Diffraction (XRD) and showed Co3O4, MoO3 and CoMoO4 substances that was deposited at CoMo/SiO2 catalyst surface. Then, Co3O4, MoO3, MoO2 and CoMoO4 substances was also appeared at CoMo/γ-Al2O3 catalyst surface. That all phases which is deposited at both of this catalyst surface, is appropriate with International Centre for Diffraction Data (ICDD standards). Then, this catalyst was used for hydrocracking process of Nyamplung Oil that takes place at batch reactor. That process was carried out at 3 MPa and 623 K over 2 hours. C5-C11 dan C12-C18 products was produced from Nyamplung Oil conversion using this process. Both of this products is increased correspond to the addition of Co and Mo metals ratio. The highest yield that was achieved is C5-C11 (24.30%) and C12-C18 (61.28%) when using Co/Mo (1.23/3.22)/γ-Al2O3 catalyst. Meanwhile, Co/Mo (1.23/3.22)/ SiO2 catalyst can produce C5-C11 (19.52%) and C12-C18 (53.55%). Keywords: CoMo catalyst; hydrocracking; nyamplung oil  Abstrak Rasio katalis CoMo sebagai katalis logam memiliki aktivitas yang baik dalam mengkonversi minyak nyamplung. Proses hydrocracking menggunakan rasio Co/Mo (0,24/0,64), (0,62/1,61), dan (1,23/3,22) terhadap SiO2 dan γ-Al2O3. Katalis tersebut menggunakan metode impregnasi basah dengan suhu pengeringan 383 K  selama 8 jam dan dikalsinasi selama 5 jam pada suhu 773 K. Karakterisasi katalis menggunakan XRD (X-ray diffraction) menunjukkan komponen Co3O4, MoO3 dan CoMoO4 terdeposisi pada permukaan katalis CoMo/SiO2. Kemudian untuk katalis CoMo/γ-Al2O3 terdapat Co3O4, MoO3, MoO2 dan CoMoO4 dipermukaan katalis. Fase yang terdeposisi pada permukaan kedua katalis disesuaikan dengan standar ICCD (International Centre for Diffraction Data). Hasil uji aktivitas katalis tersebut menggunakan reaktor batch dengan tekanan 3 MP dan temperatur 623 K, proses reaksi dilakukan selama 120 menit. Konversi minyak nyamplung ada proses hydrocracking diperoleh produk C5-C11 dan C12-C18. Persentase yield kedua jenis produk meningkat sesuai dengan penambahan rasio Co dan Mo. Produk dengan yield tertinggi pada katalis Co/Mo (1,23/3,22)/ SiO2 dengan C5-C11 (19,52%) dan C12-C18 (53,55%). Sementara untuk katalis Co/Mo (1,23/3,22)/ γ-Al2O3 diperoleh C5-C11 (24,30%) dan C12-C18 (61,28%).    Kata kunci: katalis CoMo; hydrocracking; minyak nyamplung 
KINETIKA REAKSI PADA PROSES PRODUKSI DIETIL ETER DARI ETANOL DENGAN KATALIS H-ZEOLIT Widayat Widayat; Achmad Roesyadi; Muhammad Rachimoellah
Reaktor Volume 14, Nomor 2, Oktober 2012
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (151.162 KB) | DOI: 10.14710/reaktor.14.2.101-108

Abstract

DiEtil Eter diproduksi dari etanol dengan proses dehidrasi. Penelitian ini bertujuan untukmempelajari kinetika reaksi proses dehidrasi etanol dengan katalis H-zeolit. Katalis H-zeolitdisintesis dengan proses dealuminasi dan kalsinasi dan impregnasi dengan logam Al dan prosesreduksi dan kalsinasi. Proses produksi DiEtil Eter dilaksanakan dengan proses adsorpsi dan reaksikatalitik sedangkan proses studi kinetika reaksi menggunakan pendekatan Langmuir-Hinshelwood.Proses analisis kinetika reaksi menggunakan perangkat lunak MATLAB. Model kinetika reaksi prosesdehidrasi etanol menjadi DiEtil Eter dan etilen dengan katalis H-zeolit pada konsentrasi umpanetanol 85-95% dan rentang temperatur 140-240oC, dimana reaksi permukaan yang mengontrol reaksiglobal adalahDiEthyl Ether is produced by using ethanol dehydrationprocess. The objective of this research was to study the reaction kinetic of ethanol dehydrationprocess by H-zeolite catalyst from natural zeolite. The H-zeolite catalyst was prepared bydealumination, calcination, impregnation with Al and reduction processes. DiEthyl Ether productionwas produced by using adsorption-catalytic reaction. The kinetic study was did with MATLABsoftware. Kinetic model of ethanol dehydration processes into DiEthyl Ether and ethylene with Hzeolitecatalyst and ethanol feed concentration among 85-95% and temperature between 140-240oCunder surface reaction is shown by
KONVERSI KATALITIK MINYAK SAWIT UNTUK MENGHASILKAN BIOFUEL MENGGUNAKAN SILIKA ALUMINA DAN HZSM-5 SINTESIS Nurjannah Nurjannah; Achmad Roesyadi; Danawati Hari Prajitno
Reaktor Volume 13, Nomor 1, Juni 2010
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1532.633 KB) | DOI: 10.14710/reaktor.13.1.37-43

Abstract

Terbatasnya sumber energi fosil menyebabkan perlunya pengembangan energi terbarukan yang berasal dari alam dan dapat diperbaharui. Penggunaan bahan bakar minyak bumi, baik dari penggunaan berupa alat transportasi maupun dari penggunaan oleh industri sangat mencemari lingkungan karena tingkat polusi yang ditimbulkan sangat tinggi sehingga perlu mencari bahan bakar alternatif pengganti bahan bakar gasoline, solar, dan kerosene dari minyak nabati. Penelitian dilakukan dalam dua tahapan yaitu sintesa katalis dan proses katalitik cracking. Silika alumina disintesa menggunakan metode Latourette dan HZSM-5 disintesa menggunakan metode Plank. Hasil sintesa dikarakterisasi dengan Penyerapan Spektroskopi Atomis (AAS) menunjukkan bahwa silika alumina dan HZSM-5 mempunyai Si/Al 198 dan 243. Luas permukaan  silika alumina dan HZSM-5 diperoleh dari analisa Brunauer Emmet Teller (BET) yaitu 149,91-213,35 m2.g-1 dan ukuran pori rata-rata adalah 13oA. Perengkahan katalitik dilakukan dalam suatu mikroreaktor fixed bed pada temperatur 350-500°C dan laju alir gas N2 100-160 ml.min-1 selama 120 min. Hasil perengkahan dianalisa dengan metode gas kromatografi. Hasil yang diperoleh untuk katalis HZSM-5 fraksi gasoline dengan yield tertinggi 28,87%, kerosene 16,70%, dan diesel 12,20%  pada suhu reaktor 4500C dan laju gas N2 100 ml/menit.
Biofuel Produced from Nyamplung Oil Using Catalytic Cracking Process with Zn-HZSM-5 Catalyst Agus Budianto; Danawati Hari Prajitno; Kusno Budhikarjono; Achmad Roesyadi; Ratna Ediati
IPTEK Journal of Proceedings Series Vol 1, No 1 (2014): International Seminar on Applied Technology, Science, and Arts (APTECS) 2013
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23546026.y2014i1.257

Abstract

Indonesia Presidential Regulation No. 5/2006 on National Energy Policy suggests that the government should speed up the implementation of the use of alternative energy or fuel substitution. Biofuel synthesis is one way to overcome the shortage of energy and reduce global warming due to the use of fossil fuel. Biofuel can be produced from a variety of vegetable oil. Beside palm oil, nyamplung oil can be used to produce biofuel. The technically main obstacle in producing biofuel is the availability of the catalyst. The availability catalyst are only imported and expensive. Researchers have tried to engineer a new type of catalyst that complete the weakness of zeolite based catalyst. The study was conducted through experimental approaches, testing and observations and conducted the correlation of experiment variables with the quality of the resulted catalyst. The experiment was done by synthesizing catalyst and testing it to produce biofuel from nyamplung oil. The focus of the research is directed to the effect of operating variables on the composition of the resulted biofuel and obtain catalyst performance condition and optimum condition to produce biofuel in the fixed bed reactor. The resulted catalyst can change the nyamplung oil into biofuel. Biofuel from nyamplung oil cracking process showed that the composition is biogasoline, biokerosene and biodiesel. Biodiesel fraction is the highest fraction of the biofuel produced. The highest percentage of biodiesel at a temperature of 400°C was 60%, while the lowest percentage of biodiesel at a temperature of 300°C was 48%. Products density was in the range of 0.81 to 0.86 g/ml. The highest density occured at a reactor temperature of 300 °C was 0.86g/ml. The higher the nitrogen gas flow rate the more the biodiesel formed. At a temperature of 300°C and a nitrogen flow rate of 100 ml/min, the composition solar achieved was 60%.
Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra oil Yustia Wulandari Mirzayanti; Firman Kurniawansyah; Danawati Hari Prayitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (474.699 KB) | DOI: 10.9767/bcrec.13.1.1508.136-143

Abstract

Biofuel from vegetable oil becomes one of the most suitable and logical alternatives to replace fossil fuel. The research focused on various metal ratio Zinc/Molybdenum/HZSM-5 (Zn-Mo/HZSM-5) catalyst to produce liquid hydrocarbon via catalytic hydrocracking of Ceiba penandra oil. The catalytic hydrocracking process has been applied in this study to crack Ceiba pentandra oil into a gasoil range hydrocarbon using Zn-Mo/HZSM-5 as a catalyst. The effect of various reaction temperature on the catalytic hydrocracking of Ceiba pentandra oil were studied. The Zn-Mo/HZSM-5 catalyst with metal ratio was prepared by incipient wetness impregnation method. This process used slurry pressure batch reactor with a mechanical stirrer. A series of experiments were carried out in the temperature range from 300-400 oC for 2 h at pressure between 10-15 bar. The conversion and selectivity were estimated. The liquid hydrocarbon product were identified to gasoline, kerosene, and gas oil. The results show that the use of Zn-Mo/HZSM-5 can produce gas oil as the most component in the product. Overall, the highest conversion and selectivity of gas oil range hydrocarbon was obtained when the ZnMo/HZSM-5 metal ratio was Zn(2.86 wt.%)-Mo(5.32 wt.%)/HZSM-5 and the name is Zn-Mo/HZSM-5_102. The highest conversion was obtained at 63.31 % and n-paraffin (gas oil range) selectivity was obtained at 90.75 % at a temperature of 400 oC. Ceiba pentandra oil can be recommended as the source of inedible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. 
Triglycerides Hydrocracking Reaction of Nyamplung Oil with Non-sulfided CoMo/γ-Al2O3 Catalysts Rismawati Rasyid; Rahmaniah Malik; Heri Septya Kusuma; Achmad Roesyadi; Mahfud Mahfud
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.734.196-203

Abstract

The purpose of this research are to study the temperature influence in hydrocracking process of the nyamplung oil (Calophyllum inophyllum) using a non-sulfided CoMo/γ-Al2O3 catalyst and to develop a simple kinetic model in interpreting the data of hydrocracking products. The experiment was carried out in a pressurized batch reactor operated pressure up 30 bar. The CoMo catalyst supported with γ-Al2O3 was prepared through impregnation method without sulfidation process. The operating temperature varied from 200 to 350 oC. The results show that the non-sulfided CoMo/γ-Al2O3 catalysts, nyamplung oil triglycerides can converted into gasoil and gasoline-like hydrocarbons. The triglyceride hydrocracking reaction of nyamplung oil followed a several stages, i.e., hydrogenation, dehydrogenation, and cracking. Based on the compounds contained in liquid product, hydrocracking reaction was dominated by decarboxylation. The products obtained in hydrocracking process of nyamplung oil are classified to gasoil (C11-C18) and gasoline (C5-C10).  The triglycerides hydrocracking reaction of nyamplung oil was assumed by following a series reaction mechanism and a simple kinetic model used for determined the kinetics constants. The highest reaction conversion is 99.10% obtained at temperature of 350 °C for 160 minutes reaction time. 
Hydrotalcite Catalyst for Hydrocracking Calophyllum inophyllum Oil to Biofuel: A Comparative Study with and without Nickel Impregnation Hafshah Hafshah; Danawati Hari Prajitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (101.375 KB) | DOI: 10.9767/bcrec.12.2.776.273-280

Abstract

This research aims to study the effect of nickel impregnation into hydrotalcite catalyst that use to convert Calophyllum inophyllum oil into biofuel through hydrocracking process. Hydrocracking process was carried out under mild condition (350 °C and 20 bar) for two hours in a slurry batch reactor. The adding nickel affected the reaction conversion, yield, and selectivity of gasoil. The process of oxygen removal from the compounds in the oil was characterized by Fourier Transform Infrared Spectroscopy (FTIR), and the compositions of the products were determined by Gas Chromatography-Mass Spectrometry (GC-MS). The results of the study successfully proved that nickel impregnated into hydrotalcite catalyst increased the conversion, yield, and selectivity of gasoil up to 98.57 %, 54.15 %, and 81.31 %, respectively. 
Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over Ni-Fe/HZSM-5 Catalyst Muhammad Al-Muttaqii; Firman Kurniawansyah; Danawati Hari Prajitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (931.372 KB) | DOI: 10.9767/bcrec.14.2.2669.309-319

Abstract

In this study, hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst was carried out in a batch reactor under different reaction temperature. Coconut oil is proposed as one of the potential feedstock for biofuel production. The Ni-Fe/HZSM-5 catalyst was prepared by incipient wetness impregnation method. The characterization of Ni-Fe/HZSM-5 catalyst by X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDAX), and Brunauer-Emmett-Teller (BET). The chemical composition of biofuel was analyzed by Gas-Chromatography-Mass Spectrometry (GC-MS). The results from the GC-MS analysis showed that the hydrocracking reaction over 10 % (Ni-Fe)/HZSM-5 catalyst at temperature of 375 oC obtained the highest hydrocarbon content (contained 49.4% n-paraffin, 26.93 % isoparaffin, 3.58 % olefin) and the highest yield of bio-gasoil 38.6 % in the biofuel liquid hydrocarbon. Pentadecane (n-C15) and heptadecane (n-C17) were the most abundant hydrocarbon compounds in biofuel liquid hydrocarbon. Decarboxylation and/or decarbonylation was the dominant reaction pathways in this process. Based on the result, the reaction temperature had a significant effect on the distribution of biofuel composition and yield of biofuel from coconut oil.
Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst Lenny Marlinda; Muhammad Al-Muttaqii; Ignatius Gunardi; Achmad Roesyadi; Danawati Hari Prajitno
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (641.609 KB) | DOI: 10.9767/bcrec.12.2.496.167-184

Abstract

The effect of various reaction temperature on the hydrocracking of Cerbera manghas oil to produce a paraffin-rich mixture of hydrocarbons with Co-Ni/HZSM-5 as doubled promoted catalyst were studied. The Co-Ni/HZSM-5 catalyst with various metal loading and metal ratio was prepared by incipient wetness impregnation. The catalysts were characterized by XRD, AAS, and N2 adsorption-desorption. Surface area, pore diameter, and pore volume of catalysts decreased with the increasing of metals loading. The hydrocracking process was conducted under hydrogen initial pressure in batch reactor equipped with a mechanical stirrer. The reaction was carried out at a temperature of 300-375 oC for 2 h.  Depending on the experimental condition, the reaction pressure changed between 10 bar and 15 bar.   Several parameters were used to evaluate biofuel produced, including oxygen removal, hydrocarbon composition and gasoline/kerosene/diesel yields. Biofuel was analyzed by Fourier Transform Infrared Spectroscopic (FTIR) and gas chromatography-mass spectrometry (GC-MS). The composition of hydrocarbon compounds in liquid products was similar to the compounds in the gasoil sold in unit of Pertamina Gas Stations, namely pentadecane, hexadecane, heptadecane, octadecane, and nonadecane with different amounts for each biofuel produced at different reaction temperatures. However, isoparaffin compounds were not formed at all operating conditions. Pentadecane (n-C15) and heptadecane (n-C17) were the most abundant composition in gasoil when Co-Ni/HZSM-5 catalyst was used. Cerbera Manghas oil can be recommended as the source of non-edible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. 
Co-Authors . Widayat A.A. Ketut Agung Cahyawan W Abdul Aziz Adrianto Prihartantyo Agus Budianto Aini, Afrida Nur Aini, Apsari Puspita Airlangga, Bramantyo Al-Muttaqii, Muhammad Ali Altway Anindita Pramesti Putri Nugroho Aparamarta, Hakun Wirawasista Arief Budiman Aushaf, Faishal Danawati Hari Prajitno Darmawan, Raden Delfimelinda Nurul Riyadi Desty Rusdiana Sari Devi, Fatma Putrinta Devita Dian.L Dini Fathmawati Dwi Fitriyanto Fatma Putrinta Devi Fika Anjana Fika Anjana Firman Kurniawansyah Firman Kurniawansyah H Hadiyanto H M Rachimoellah H Satriadi Hafshah Hafshah Hafshah Hafshah Hari Prajitno, Danawati Himawan TBM Petrus Himawan Tri Bayu Murti Petrus Ignatius Gunardi Izza Aliyatul Muna, Izza Aliyatul Jimmy Jimmy Kurniawansyah, Firman Kurniawansyah, Firman Kusno Budhikarjono Kusno Budikarjono Kusno Budikarjono Kusno Budikarjono Kusno Budikarjono Kusuma, Heri Septya Lailatul Qadariyah Lenny Marlinda M. Renardo Prathama Abidin Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Marbun, Maja Pranata Mitsuru Sasaki Motonobu Goto Motonobu Goto Muhammad Al Muttaqii Muhammad Al Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Rachimoellah Niar Kurnia Julianti Nurjannah Nurjannah Nurjannah Nurjannah Nurkhamidah, Siti Nyoman Puspa Asri Oktarinda Damayanti Pamungkas, Gagas Rachmaniah, Orchidea Rahmaniah Malik Rahmaniah Malik Rahmi Ratna Ediati Renanto Handogo Ricco Aditya S. W Rismawati Rasyid Riyadi, Delfimelinda Nurul Riza Alviany S. Suprapto Santi Dyah Savitri Semuel Pati Senda Semuel Pati Senda Silvy Eka Andansari Siti Machmudah Siti Machmudah Siti Machmudah Siti Machmudah Siti Zullaikah Sri Rachmania Juliastuti, Sri Rachmania Sumarno . Suprapto Suprapto Tantri Kusuma Wardani Tantular Nurtono W. Wahyudiono Wahono Sumaryono Wahyudiono Wahyudiono Widi Astuti Widi Astuti Widiyastuti Widya Rosa Oktaviani Winardi, Sugeng Yazid Bindar Yazid Bindar Yeni Rahmawati, Yeni Yuanita Gustanti Yustia Wulandari Mirzayanti Zulnazri, Z