Claim Missing Document
Check
Articles

Hydrocracking of Non-edible Vegetable Oils with Co-Ni/HZSM-5 Catalyst to Gasoil Containing Aromatics Danawati Hari Prajitno; Achmad Roesyadi; Muhammad Al-Muttaqii; Lenny Marlinda
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (134.117 KB) | DOI: 10.9767/bcrec.12.3.799.318-328

Abstract

Biofuel has been considered as one of the environmentally friendly energy sources to substitute fossil fuel derived from non-edible vegetable oil. This research aims to investigate the effect of the non-edible vegetable oil composition on a specific hydrocarbons distribution contained in biofuel and the aromatics formation through hydrocracking reaction with the Co-Ni/HZSM-5 catalyst. The formation of aromatics from non-edible vegetable oils, such as: Cerbera manghas, rubber seed, and sunan candlenut oils, containing saturated, mono- and polyunsaturated fatty acids is presented. The hydrocracking reaction was carried out in a pressure batch reactor, a reaction temperature of 350 oC for 2 h, reactor pressure of 15 bar after flowing H2 for 1 hour, and a catalyst/oil ratio of 1 g/200 mL. Liquid hydrocarbon product was analyzed by gas chromatography-mass spectrometry. Based on the GC-MS analysis, hydrocracking on three different oils indicated that polyunsaturated fatty acids were required to produce relatively high aromatics content. The sunan candlenut oil can be converted to gasoil range hydrocarbons containing a small amount of aromatic through hydrocracking reaction. Meanwhile, the aromatics in liquid product from hydrocracking of Cerbera manghas and rubber seed oils were not found. 
Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method Niar Kurnia Julianti; Tantri Kusuma Wardani; Ignatius Gunardi; Achmad Roesyadi
The Journal of Pure and Applied Chemistry Research Vol 6, No 1 (2017): Edition of January - April 2017
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1081.392 KB) | DOI: 10.21776/ub.jpacr.2017.006.01.280

Abstract

The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO3)3.6H2O and Al(NO3)3.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 450oC, 550oC and 650oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR). The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD). The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g. 
Pembuatan Glukosa dan Sukrosa dari Rumput Laut dengan Metode Hidrolisa Menggunakan Katalis SiO2 Fatma Putrinta Devi; Delfimelinda Nurul Riyadi; Firman Kurniawansyah; Himawan TBM Petrus; Widi Astuti; Achmad Roesyadi
Prosiding Seminar Nasional Sains dan Teknologi Terapan 2020: Memberdayakan Riset dan Inovasi untuk Teknologi yang Berkelanjutan
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia berada pada posisi pertama eksportir rumput laut, Namun pada posisi ke-7 dari sisi harga. Karbohidrat pada rumput laut dihidrolisis dengan katalis asam akan menghasilkan sejumlah monosakarida. Dalam hal ini, katalis berperan penting untuk menghasilkan produk. Memproses dengan katalis asam homogen memiliki beberapa kekurangan, salah satunya ialah sulit dalam proses pemisahan antara katalis dan produk akhir. Oleh karena itu dalam penelitian ini dilakukan dengan menggunakan bantuan katalis heterogen yaitu silika (SiO2). Tujuan penelitian ini adalah untuk mempelajari proses pembuatan sukrosa dan glukosa yang terbentuk dari rumput laut dan mempelajari reaksi proses hidrolisa rumput laut dengan katalis heterogen. Metodologi yang digunakan yaitu hidrolisa untuk pembuatan sukrosa dan glukosa dengan variabel katalis SiO2 komersil sulfonat dan SiO2 geothermal sludge sulfonat. Hasil analisa XRD mendapatkan sudut difraksi pada katalis SiO2 komersil sulfonat bersifat amorf dan katalis SiO2 geothermal sludge (GS) sulfonat bersifat kristal. Glukosa yang dihasilkan pada reaksi hidrolisis katalitik dengan katalis SiO2 komersil sulfonat lebih besar yaitu sebesar 0,0143(b/b) dari variabel katalis yang lain. Dan memiliki kadar sukrosa lebih tinggi sebesar 1,5 %. Sehingga dapat disimpulkan bahwa katalis SiO2 komersil sulfonat merupakan katalis yang menghasilkan glukosa dan kadar sukrosa lebih banyak dibandingkan dengan katalis lainnya.
Hydrocracking of Coconut Oil over Ni-Fe/HZSM-5 Catalyst to Produce Hydrocarbon Biofuel Muhammad Al-Muttaqii; Firman Kurniawansyah; Danawati Hari Prajitno; Achmad Roesyadi
Indonesian Journal of Chemistry Vol 19, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (259.955 KB) | DOI: 10.22146/ijc.33590

Abstract

This present study was aimed to investigate the hydrocracking of coconut oil using Ni-Fe/HZSM-5 catalyst in a batch reactor at three reaction temperatures (350, 375, and 400 °C). The Ni-Fe/HZSM-5 catalyst was prepared by using incipient wetness impregnation. The Ni-Fe/HZSM-5 catalyst was characterized using XRD, BET, and SEM-EDX. From XRD results, the loading of Ni and Fe did not change the crystalline structure of HZSM-5 catalyst. The surface area of HZSM-5 was 425 m2/g and decreased after the addition of metals (Ni and Fe) into HZSM-5 support. These changes implied that Ni and Fe particles were successfully dispersed on the HZSM-5 surface and incorporated into HZSM-5 pore. The product of hydrocarbon biofuel was analyzed using GC-MS. The GC-MS results of hydrocarbon biofuel showed the highest compounds for n-paraffin and yield for gasoil was 39.24 and 18.4% at a temperature of 400 °C, respectively. The reaction temperature affected the yield and the composition of hydrocarbon biofuel. At this reaction temperature condition, decarboxylation and decarbonylation were favored; lead to the formation of n-alkanes with an odd number of carbon atoms chain length.
Identifikasi Kandungan Boraks dan Formalin pada Makanan dengan Menggunakan Scientific Vs Simple Methods Siti Nurkhamidah; Ali Altway; Sugeng Winardi; Achmad Roesyadi; Yeni Rahmawati; Siti Machmudah; Widiyastuti; Tantular Nurtono; Siti Zullaikah; Lailatul Qadariyah
Sewagati Vol 1 No 1 (2017)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.063 KB) | DOI: 10.12962/j26139960.v1i1.295

Abstract

Seiring dengan meningkatnya kebutuhan akan bahan makanan yang tidak mudah rusak, boraks banyak sekali digunakan dalam industri makanan, seperti: dalam pembuatan mie basah, lontong, ketupat, tahu, bakso, sosis, dan lain-lain. Selain boraks, formalin juga banyak digunakan sebagai bahan pengawet makanan. Padahal zat-zat kimia tersebut merupakan bahan beracun dan bahan berbahaya bagi manusia sehingga sangat dilarang digunakan sebagai bahan baku makanan. Oleh karena itu, diperlukan metode identifikasi yang sederhana (simple method) untuk kedua bahan berbahaya tersebut dalam makanan. Sehingga, dapat dilakukan oleh konsumen terutama para ibu rumah tangga dengan mudah. Untuk menguji validitas dari simple method tersebut, maka hasil ujinya perlu dibandingkan dengan scientific method. Hasil uji kandungan boraks pada makanan dengan menggunakan simple method telah dilakukan di Laboratorium dan hasil uji menunjukaan bahwa dari 28 sampel yang di uji, ada dua sample yang positif mengandung boraks. Hasil dari metode nyala api yang merupakan scientific method untuk uji kandungan boraks menunjukkan hasil yang sama dengan hasil uji menggunakan simple method. Sedangkan pada uji formalin, baik menggunakan scientific method menunjukkan hasil bahwa terdapat tujuh sampel yang positif mengandung formalin dari 28 sampel yang diuji dan sebagian besar sampel tersebut merupakan ikan asin. Hasil dari uji tersebut telah disosialisasikan kepada masyarakat sekitar Institut Teknologi Sepuluh Nopember (ITS), yaitu ibu-ibu PKK di Perumahan Sukolilo Dian Regency RT 8 dan 9, RW 2 Kelurahan Keputih Kecamatan Sukolilo Surabaya pada 26 Juni 2016 dan dilakukan sosialisasi kedua pada tanggal 30 Juli 2016 untuk melihat tingkat keberhasilan dan keberlanjutan dari sosialisasi yang pertama.
Hydrocracking of Non-edible Vegetable Oils with Co-Ni/HZSM-5 Catalyst to Gasoil Containing Aromatics Danawati Hari Prajitno; Achmad Roesyadi; Muhammad Al-Muttaqii; Lenny Marlinda
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.3.799.318-328

Abstract

Biofuel has been considered as one of the environmentally friendly energy sources to substitute fossil fuel derived from non-edible vegetable oil. This research aims to investigate the effect of the non-edible vegetable oil composition on a specific hydrocarbons distribution contained in biofuel and the aromatics formation through hydrocracking reaction with the Co-Ni/HZSM-5 catalyst. The formation of aromatics from non-edible vegetable oils, such as: Cerbera manghas, rubber seed, and sunan candlenut oils, containing saturated, mono- and polyunsaturated fatty acids is presented. The hydrocracking reaction was carried out in a pressure batch reactor, a reaction temperature of 350 oC for 2 h, reactor pressure of 15 bar after flowing H2 for 1 hour, and a catalyst/oil ratio of 1 g/200 mL. Liquid hydrocarbon product was analyzed by gas chromatography-mass spectrometry. Based on the GC-MS analysis, hydrocracking on three different oils indicated that polyunsaturated fatty acids were required to produce relatively high aromatics content. The sunan candlenut oil can be converted to gasoil range hydrocarbons containing a small amount of aromatic through hydrocracking reaction. Meanwhile, the aromatics in liquid product from hydrocracking of Cerbera manghas and rubber seed oils were not found. 
Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra oil Yustia Wulandari Mirzayanti; Firman Kurniawansyah; Danawati Hari Prayitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.1508.136-143

Abstract

Biofuel from vegetable oil becomes one of the most suitable and logical alternatives to replace fossil fuel. The research focused on various metal ratio Zinc/Molybdenum/HZSM-5 (Zn-Mo/HZSM-5) catalyst to produce liquid hydrocarbon via catalytic hydrocracking of Ceiba penandra oil. The catalytic hydrocracking process has been applied in this study to crack Ceiba pentandra oil into a gasoil range hydrocarbon using Zn-Mo/HZSM-5 as a catalyst. The effect of various reaction temperature on the catalytic hydrocracking of Ceiba pentandra oil were studied. The Zn-Mo/HZSM-5 catalyst with metal ratio was prepared by incipient wetness impregnation method. This process used slurry pressure batch reactor with a mechanical stirrer. A series of experiments were carried out in the temperature range from 300-400 oC for 2 h at pressure between 10-15 bar. The conversion and selectivity were estimated. The liquid hydrocarbon product were identified to gasoline, kerosene, and gas oil. The results show that the use of Zn-Mo/HZSM-5 can produce gas oil as the most component in the product. Overall, the highest conversion and selectivity of gas oil range hydrocarbon was obtained when the ZnMo/HZSM-5 metal ratio was Zn(2.86 wt.%)-Mo(5.32 wt.%)/HZSM-5 and the name is Zn-Mo/HZSM-5_102. The highest conversion was obtained at 63.31 % and n-paraffin (gas oil range) selectivity was obtained at 90.75 % at a temperature of 400 oC. Ceiba pentandra oil can be recommended as the source of inedible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. 
Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over Ni-Fe/HZSM-5 Catalyst Muhammad Al-Muttaqii; Firman Kurniawansyah; Danawati Hari Prajitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.2.2669.309-319

Abstract

In this study, hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst was carried out in a batch reactor under different reaction temperature. Coconut oil is proposed as one of the potential feedstock for biofuel production. The Ni-Fe/HZSM-5 catalyst was prepared by incipient wetness impregnation method. The characterization of Ni-Fe/HZSM-5 catalyst by X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDAX), and Brunauer-Emmett-Teller (BET). The chemical composition of biofuel was analyzed by Gas-Chromatography-Mass Spectrometry (GC-MS). The results from the GC-MS analysis showed that the hydrocracking reaction over 10 % (Ni-Fe)/HZSM-5 catalyst at temperature of 375 oC obtained the highest hydrocarbon content (contained 49.4% n-paraffin, 26.93 % isoparaffin, 3.58 % olefin) and the highest yield of bio-gasoil 38.6 % in the biofuel liquid hydrocarbon. Pentadecane (n-C15) and heptadecane (n-C17) were the most abundant hydrocarbon compounds in biofuel liquid hydrocarbon. Decarboxylation and/or decarbonylation was the dominant reaction pathways in this process. Based on the result, the reaction temperature had a significant effect on the distribution of biofuel composition and yield of biofuel from coconut oil.
Triglycerides Hydrocracking Reaction of Nyamplung Oil with Non-sulfided CoMo/γ-Al2O3 Catalysts Rismawati Rasyid; Rahmaniah Malik; Heri Septya Kusuma; Achmad Roesyadi; Mahfud Mahfud
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.734.196-203

Abstract

The purpose of this research are to study the temperature influence in hydrocracking process of the nyamplung oil (Calophyllum inophyllum) using a non-sulfided CoMo/γ-Al2O3 catalyst and to develop a simple kinetic model in interpreting the data of hydrocracking products. The experiment was carried out in a pressurized batch reactor operated pressure up 30 bar. The CoMo catalyst supported with γ-Al2O3 was prepared through impregnation method without sulfidation process. The operating temperature varied from 200 to 350 oC. The results show that the non-sulfided CoMo/γ-Al2O3 catalysts, nyamplung oil triglycerides can converted into gasoil and gasoline-like hydrocarbons. The triglyceride hydrocracking reaction of nyamplung oil followed a several stages, i.e., hydrogenation, dehydrogenation, and cracking. Based on the compounds contained in liquid product, hydrocracking reaction was dominated by decarboxylation. The products obtained in hydrocracking process of nyamplung oil are classified to gasoil (C11-C18) and gasoline (C5-C10).  The triglycerides hydrocracking reaction of nyamplung oil was assumed by following a series reaction mechanism and a simple kinetic model used for determined the kinetics constants. The highest reaction conversion is 99.10% obtained at temperature of 350 °C for 160 minutes reaction time. 
Kinerja Katalis Ni-Cu/HZSM-5 dalam Pembuatan Biogasoil dari Minyak Bintaro (Cerbera Manghas) dengan Proses Hydrocracking Aini, Afrida Nur; Al-Muttaqii, Muhammad; Roesyadi, Achmad; Kurniawansyah, Firman
BERKALA SAINSTEK Vol 8 No 3 (2020)
Publisher : Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/bst.v8i3.17937

Abstract

Catalytic cracking dan hydroprocessing merupakan dua proses yang digunakan untuk mengubah minyak nabati menjadi biofuel, gabungan dari kedua proses tersebut dinamakan reaksi hydrocracking. Minyak bintaro yang bersifat non-edibleoil serta memiliki kadar minyak cukup banyak yakni sebesar 35-50% dapat direkomendasikan sebagai salah satu sumber minyak nabati yang dapat diolah menjadi biogasoil. Penambahan logam nikel (Ni) dan tembaga (Cu) ialah untuk memperoleh yield yang lebih baik daripada menggunakan satu jenis katalis. Preparasi katalis dilakukan dengan menggunakan metode incipient wetness impregnation. Variabel loading support HZSM-5 yang digunakan sebesar 5% dan 10%, serta ratio logam Ni-Cu yaitu 1:1. Katalis Ni-Cu/HZSM-5 dianalisa menggunakan BET, EDX, dan XRD untuk mengetahui karakteristik katalis. Selanjutnya proses hydrocracking dilakukan dengan mencampurkan 2 gram katalis Ni- Cu/HZSM-5 dan 250 ml minyak bintaro ke dalam reaktor batch berpengaduk pada suhu reaksi 375 ̊C selama 2 jam. Produk cair (biofuel) yang dihasilkan dari proses hydrocracking dianalisa menggunakan GC-MS untuk mengetahui komposisi hidrokarbon. Rute reaksi yang mendominasi dalam penelitian ini ialah reaksi dekarbinolasi dan dekarboksilasi. Hal itu terlihat dari komposisi hidrokarbon terbanyak dari produk biogsoil yang dihasilkan ialah C15 dan C17. Hasil dari penelitian diperoleh Ni-Cu/HZSM-5 dengan loading 5% dan ratio logam 1:1 optimum digunakan pada proses hydrocracking minyak bintaro untuk menghasilkan biogasoil dengan yield sebesar 82,7%.
Co-Authors . Widayat A.A. Ketut Agung Cahyawan W Abdul Aziz Adrianto Prihartantyo Agus Budianto Aini, Afrida Nur Aini, Apsari Puspita Airlangga, Bramantyo Al-Muttaqii, Muhammad Ali Altway Anindita Pramesti Putri Nugroho Aparamarta, Hakun Wirawasista Arief Budiman Aushaf, Faishal Danawati Hari Prajitno Darmawan, Raden Delfimelinda Nurul Riyadi Desty Rusdiana Sari Devi, Fatma Putrinta Devita Dian.L Dini Fathmawati Dwi Fitriyanto Fatma Putrinta Devi Fika Anjana Fika Anjana Firman Kurniawansyah Firman Kurniawansyah H Hadiyanto H M Rachimoellah H Satriadi Hafshah Hafshah Hafshah Hafshah Hari Prajitno, Danawati Himawan TBM Petrus Himawan Tri Bayu Murti Petrus Ignatius Gunardi Izza Aliyatul Muna, Izza Aliyatul Jimmy Jimmy Kurniawansyah, Firman Kurniawansyah, Firman Kusno Budhikarjono Kusno Budikarjono Kusno Budikarjono Kusno Budikarjono Kusno Budikarjono Kusuma, Heri Septya Lailatul Qadariyah Lenny Marlinda M. Renardo Prathama Abidin Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Mahfud Marbun, Maja Pranata Mitsuru Sasaki Motonobu Goto Motonobu Goto Muhammad Al Muttaqii Muhammad Al Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Al-Muttaqii Muhammad Rachimoellah Niar Kurnia Julianti Nurjannah Nurjannah Nurjannah Nurjannah Nurkhamidah, Siti Nyoman Puspa Asri Oktarinda Damayanti Pamungkas, Gagas Rachmaniah, Orchidea Rahmaniah Malik Rahmaniah Malik Rahmi Ratna Ediati Renanto Handogo Ricco Aditya S. W Rismawati Rasyid Riyadi, Delfimelinda Nurul Riza Alviany S. Suprapto Santi Dyah Savitri Semuel Pati Senda Semuel Pati Senda Silvy Eka Andansari Siti Machmudah Siti Machmudah Siti Machmudah Siti Machmudah Siti Zullaikah Sri Rachmania Juliastuti, Sri Rachmania Sumarno . Suprapto Suprapto Tantri Kusuma Wardani Tantular Nurtono W. Wahyudiono Wahono Sumaryono Wahyudiono Wahyudiono Widi Astuti Widi Astuti Widiyastuti Widya Rosa Oktaviani Winardi, Sugeng Yazid Bindar Yazid Bindar Yeni Rahmawati, Yeni Yuanita Gustanti Yustia Wulandari Mirzayanti Zulnazri, Z