This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering TEKNIK INFORMATIKA Seminar Nasional Aplikasi Teknologi Informasi (SNATI) ELKHA : Jurnal Teknik Elektro Proceedings of KNASTIK TELKOMNIKA (Telecommunication Computing Electronics and Control) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Teknologi Informasi dan Ilmu Komputer Global Strategis Jurnal Teknologi dan Sistem Komputer Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Penelitian Politik Jusikom : Jurnal Sistem Komputer Musirawas Conference SENATIK STT Adisutjipto Yogyakarta Jurnal Pertahanan : Media Informasi tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI JITTER (Jurnal Ilmiah Teknologi Informasi Terapan) KACANEGARA Jurnal Pengabdian pada Masyarakat Jurnal Mnemonic Abdimas Galuh: Jurnal Pengabdian Kepada Masyarakat Abdimasku : Jurnal Pengabdian Masyarakat Aiti: Jurnal Teknologi Informasi SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences Jurnal Pertahanan dan Bela Negara Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) BHAKTI PERSADA Jurnal Aplikasi IPTEKS (Journal of Applied Sciences and Technology) ELPOSYS: Jurnal Sistem Kelistrikan Jurnal Elektrosista Jurnal Informatika Polinema (JIP) Jurnal TNI Angkatan Udara Jurnal Pengabdian Kepada Masyarakat Jurnal Ilmiah Tenaga Listrik.
Claim Missing Document
Check
Articles

Improving the Quality of Coffee Beans and Branding of Coffee Products of Sekar Adji MSMEs Malang Through Inovokasi Program Grants Noer Syamsiana, Ika; Datumaya Wahyudi Sumari, Arwin; Fiernaningsih, Nilawati; Nurwicaksana, Wahyu Aulia; Nafisah, Nihayatun; Findi, Putri; Anggraini Ningrum, Annisa; Ibrohim Farros, Ammar; Wildan Fikri, Mohammad
SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Vol. 6 No. 2 (2025)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/spekta.v6i2.13119

Abstract

Background: Coffee is a key plantation commodity in Indonesia, with Gunung Kawi producing Robusta, Arabica, and Excelsa varieties. However, local farmers still rely on traditional drying methods and outdated marketing, affecting bean quality and sales. This community service program seeks to address these issues by introducing a 30 kg-capacity rotary dryer to meet the SNI 01-2907-2008 standard and by providing digital marketing training to enhance competitiveness. Contribution: This program significantly supports Sekar Adji MSMEs by introducing a rotary dryer that enables coffee drying to meet national quality standards. Combined with digital marketing training and improved packaging, it enhances product promotion and competitiveness in the digital market, ultimately boosting MSME revenue. Method: The program involves four main activities: manufacturing and training on the use of a 30 kg-capacity rotary dryer, providing digital marketing training to enhance social media and e-commerce use, redesigning coffee packaging for better appeal, and restructuring the MSME organization to improve adaptability and management efficiency. Results: The program introduced a 30 kg-capacity rotary dryer and digital marketing training. The dryer reduced moisture content to 11.5%, and product packaging was improved with five new designs. The program significantly increased marketing reach and MSME revenue. Digital platforms such as Instagram, Tokopedia, and TikTok Shop were utilized to expand online presence, and a new organizational structure enhanced business operation. Conclusion: Analysis of the results shows that the program positively impacted product quality and sales at Sekar Adji MSMEs, primarily by improving drying processes and enhancing digital marketing through targeted training.
Perbandingan Kinerja Machine Learning Perekomendasi Tanaman Berdasarkan Data Iklim dan Kondisi Tanah Zidan Fahreza; Arwin Datumaya Wahyudi Sumari; Mila Kusuma
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The selection of appropriate crop types according to agroclimatic conditions is a determining factor in the success of agricultural productivity. This study develops a machine learning-based crop recommendation system to classify 22 crop types based on seven agroclimatic parameters (N, P, K, temperature, humidity, pH, and rainfall). Four machine learning algorithms were compared for performance: K-Nearest Neighbors (KNN), Logistic Regression, Artificial Neural Network (ANN), and Decision Tree using a dataset of 2200 samples with an 80:20 split ratio for training and testing. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The research results show that KNN with k=13 achieved optimal performance with 98.18% accuracy, 98.28% precision, 98.18% recall, and 98.17% F1-score. This algorithm outperformed Logistic Regression (97.27%), ANN (96.59%), and Decision Tree (95.23%). Confusion matrix analysis identified that classification errors primarily occurred in crop pairs with similar agroclimatic characteristics such as lentil-chickpea and pigeonpeas-kidneybeans. KNN proved to be the most suitable model for implementing precision agriculture decision support systems in the Indonesian agricultural context by providing high accuracy and good generalization capability.
The selection of appropriate crop types according to agroclimatic conditions is a determining factor in the success of agricultural productivity. This study develops a machine learning-based crop recommendation system to classify 22 crop types based on se Zidan Fahreza; Arwin Datumaya Wahyudi Sumari; Mila Kusuma
Prosiding SISFOTEK Vol 9 No 1 (2025): SISFOTEK IX 2025
Publisher : Ikatan Ahli Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The selection of appropriate crop types according to agroclimatic conditions is a determining factor in the success of agricultural productivity. This study develops a machine learning-based crop recommendation system to classify 22 crop types based on seven agroclimatic parameters (N, P, K, temperature, humidity, pH, and rainfall). Four machine learning algorithms were compared for performance: K-Nearest Neighbors (KNN), Logistic Regression, Artificial Neural Network (ANN), and Decision Tree using a dataset of 2200 samples with an 80:20 split ratio for training and testing. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The research results show that KNN with k=13 achieved optimal performance with 98.18% accuracy, 98.28% precision, 98.18% recall, and 98.17% F1-score. This algorithm outperformed Logistic Regression (97.27%), ANN (96.59%), and Decision Tree (95.23%). Confusion matrix analysis identified that classification errors primarily occurred in crop pairs with similar agroclimatic characteristics such as lentil-chickpea and pigeonpeas-kidneybeans. KNN proved to be the most suitable model for implementing precision agriculture decision support systems in the Indonesian agricultural context by providing high accuracy and good generalization capability.
Co-Authors A.I. Wuryandari A.S. Ahmad Aciek Ida Wuryandari Adang Suwandi Ahmad Adang Suwandi Ahmad Adang Suwandi Ahmad Addin, Tri Nur Ade Ismail Adhika Febrianto Adinandra, Dimas Eka Affandi, Luqman Afifah Millatina Nugraheni Agustian, Harliyus Alfian, Ahmad Alfian Alvi Rahmadhani Anggraini Kusumaningrum, Anggraini Anggraini Ningrum, Annisa Annisa Puspa Kirana Annurroni, Ilyas Anton Setiawan Honggowibowo Ardhia Rahmania, Diva Arie Rachmad Syulistyo Arya Septiawan Astika AyuningTyas, Astika Aziza, Nadia Layra Bachri, Karel Octavianus Bambang Anggoro Soedjarno Bambang Gastomo Bayu Anugerah Rahardjo Putra Benedictus Mardwianta, Benedictus Bima Gilang Lesmana Brian Adam Bhagaskara Catherine Olivia Sereati Chika Labita David Putra Setyawan David Putra Setyawan, David Putra Denny Dermawan Dhebys Suryani Hormansyah, Dhebys Suryani Dimas Rossiawan Hendra Putra Dimas Rossiawan Hendra Putra Djapri, Suparman Dwi Nugraheny, Dwi Dwiguspana, Edwin Emy Setyaningsih Farchan Agil, Mochammad Farel Putra Hidayat Farida Agustini Widjajati Febrianto, Adhika Fiernaningsih, Nilawati Findi, Putri Firman Munthaha Hadi, Arijo Haruno Sajati Haryo Budi Rahmadi Hijriana, Sukriya Ibrohim Farros, Ammar Indrazno Siradjuddin Jaka Sembiring Jaka Sembiring Khayam, Umar Ladiyan, M. Shafriza Luluk Mufida M. Ardli Aqdama Mamluatul Hani’ah Maulana Zinedin Zidane Mawarni, Putri Indah Mila Kusuma Moch Zawaruddin Abdullah Mochammad Syaifuddin Zuhri Muhammad Auful Kirom Muhammad Bisri Musthafa Muhammad Bisri Musthofa Muhammad Ifan Fanani Muhammad Oktoda Noorrohman Mustika Mentari Nabilah Hanun Nafisah, Nihayatun Naily Ikmalul Insiyah Ngat Mari Ngatmari Nugraheni, Afifah Milatina Nugroho, Sutopo Purwo Nurwicaksana, Wahyu Aulia Nuryatno, Edi Triono Odhitya Desta Triswidrananta Odhitya Desta Triswidrananta Pamungkas, Dedi Bintang Partono, Rani Pramitarini, Yushintia Pranata, Aldi Surya Prastiwi, Dila Prihantoro, Mitro Pujiastuti, Asih Purwoko, Agus Putra, Septafiansyah Dwi Rahmad, Cahya Rahman, Alex Firmansyah Rahmawati, Fajar Khanif Ramadhanty, Gisanda Aliya Ricky Yulian Adi Pratama Rindu Alriavindra Funny Rokhimatul Wakhidah Rudy Laksmono Widayatno Salam Aryanto Sarwono Sutikno Satwika, Satriya Dipa Semmy Tyar Armandha Septian Enggar Sukmana Setiawan, Paulus Siswanto, Sela Aulia SUDARYANTO SUDARYANTO Sukma Himawan, Dhimas Arbi Sulistio, Andhika Syahbana, Muhammad Rifky Syamsiana, Ika Noer Syamsuri, Tresna Umar Trio Adiono Wahyudi, Moh Ari Wildan Fikri, Mohammad Wintolo, Hero Yenni Astuti, Yenni Yoda, Vincensius Arga Yohana, Puspa Ayu Yohana Yoppy Yunhasnawa Yushintia Pramitarini Yusuf Kurniawan Zaenal Abidin Zidan Fahreza Zidan Shabira As Sidiq