Claim Missing Document
Check
Articles

Found 25 Documents
Search

Applied K-Nearest Neighbors (KNN) on Dust Supression Prototype Ryan Yudha Adhitya; Agung Kurniawan Nurhasan; Hendro Agus Widodo; Rachmad Andri Atmoko
Indonesian Journal of Engineering Research Vol 1 No 1 (2020): Indonesian Journal of Engineering Research
Publisher : Future Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/ijer.01.01.03

Abstract

Steam power plants that use coal as fuel have serious problems during operation. Before heading to the combustion process, coal is stored in an open field area. However, this results in fine particles of coal dust being exposed to wind and polluting the surrounding environment. The purpose of this study is to minimize the impact of pollution from coal dust by using the dust suppression tool. The tools that have been run manually or conventionally can be operated automatically to facilitate the operator in controlling dust suppression without the need to go to the field. This research proposes a prototype dust suppression equipped with dust and temperature sensors, the sensor data is a representation of the condition of the coal storage area which is processed using the K-Nearest Neighbors method to classify whether the condition of the storage area is normal or dusty. When conditions are dusty, the pump activates and directs bursts of water at the coal to minimize dust. In the application of the K-Nearest Neighbors method, center point 1 is obtained for normal conditions, with a dust density of 0.4353 mg / m3 and a temperature of 27.5818 °C. Whereas center point 2 for dusty conditions has a dust density of 2,374 mg / m3 and a temperature of 28.2667 °C. From 40 testing data in real-time, a success rate of 87.5% was obtained.
REMOTE LABORATORY BERBASIS PROTOKOL VIRTUAL NETWORK COMPUTING SEBAGAI MEDIA PEMBELAJARAN JARAK JAUH PROGRAMMABLE LOGIC CONTROLLER Isa Rachman; Muhammad Khoirul Hasin; Ryan Yudha Adhitya; Mohammad Basuki Rahmat; Adianto Adianto; Agus Nurcahyo; Dewi Rizani Ruwahida
TEKTRIKA Vol 8 No 1 (2023): TEKTRIKA Vol.8 No.1 2023
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/tektrika.v8i1.6044

Abstract

One effective method that can be applied to online practical learning during the COVID-19 pandemic is remote laboratory which is a combination of the real world and the virtual world using the internet network. This research aims to design remote laboratory based on the Virtual Network Computing (VNC) on Programmable Logic Controller (PLC) which is one of the regular practical devices used in Industrial Automation Laboratory. Remote laboratory in the form of a remote laboratory website for administrators consisting of user management and course management; and for users it consists of login, course and schedule, user order and remote desktop containing PLC Trainer, XG5000 and camera. From the results of remote laboratory testing starting from registration, remote laboratory website, login, course selection, suitability of course schedules, user order and remote desktop can be accessed so that the designed remote laboratory can work properly. The existence of a delay time of 0,52–1,73 seconds for the results of shooting by the camera as a display visualization for online monitoring of practice activities in the laboratory on the client computer is influenced by the condition of the internet network used mainly on server computers. Key Words: practice, online, remote, laboratory, VNC, PLC.
Pengiriman Data Realtime PLC ke ERP Odoo dengan Dilengkapi Analisa OEE Fiqrotin Nur Asita; Muhammad Khoirul Hasin; Zindhu Maulana Ahmad Putra; Ryan Yudha Adhitya; Imam Sutrisno
Computer Science Research and Its Development Journal Vol. 15 No. 3 (2023): October 2023
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

With the integration of IT (Information Technology) and OT (Operational Technology), the data generated by the OT system can be easily processed and analyzed using the IT system, thereby synergistically increasing the efficiency and productivity of the company. In addition, to maximize machine performance, the Overall Equipment Effectiveness (OEE) method can be applied to monitor production results. Therefore, the authors designed an integration system based on a software connector to connect the Programmable Logic Controller (PLC) with Enterprise Resources Planning (ERP) Odoo. This system facilitates three communication protocols, namely Modbus TCP/IP, Ethernet/IP, and Profinet. As proof of the success of the connector software, a bottle-sorting plant controlled by PLC was made. The data from the plant is acquired by the connector software and sent in real-time to ERP Odoo. In ERP Odoo, an analysis is carried out through manufacturing modules that are custom-made by applying the OEE method as a step in monitoring the production process. Through research conducted, this integration system has been successfully designed and implemented in a bottle-sorting plant. The results of a comparison between manual OEE calculations and OEE calculations in ERP Odoo found an error of 0.161%. Thus, the IT and OT integration system created has been successful and has made the production process more efficient and has provided significant benefits to the company
RANCANG BANGUN DAN PELATIHAN PANEL HUBUNG GENERATOR MIKROHIDRO PADA PONDOK PESANTREN TARBIYATUL QURAN, DESA TORONGREJO, KOTA BATU Ryan Yudha Adhitya; George Endri Kusuma; Sryang Tera Sarena; Burniadi Moballa; Danis Maulana
Jurnal Cakrawala Maritim Vol 1 No 2 (2018): Jurnal Cakrawala Maritim
Publisher : Pusat Penelitian dan Pengabdian Masyarakat (P3M) - PPNS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33863/cakrawalamaritim.v1i2.898

Abstract

Rancang Bangun
Implementation of Extreme Learning Machine for Water Quality Control in Vannamei Shrimp Ponds Faris Robby Zakariya; Mat Syai'in; Ryan Yudha Adhitya
Journal of Computer, Electronic, and Telecommunication (COMPLETE) Vol. 4 No. 1 (2023): July
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52435/complete.v4i1.322

Abstract

The application of science and technology knowledge is crucial in supporting the Indonesian Government's program to increase the production of Litopenaesus Vannamei shrimp. This research collaborates with shrimp pond farmers to develop technology that supports the cultivation of vaname shrimp. The water quality affect the harvest results, and the water parameters such as pH, dissolved oxygen (DO), alkalinity, salinity, and temperature should be monitored and adjusted if the parameters exceed the predetermined limits. We have developed an Extreme Learning Machine-based water quality management system tailored to the geographic conditions of Indonesia. This tool uses sensors to read data from the pond water, which is then processed by a microcontroller and displayed in a web-based information system. This tool helps farmers determine the water conditions and condition it accordingly. Based on experimental result error dari data training adalah 0.0001 dan error pada data testing yaitu sebesar 0.1851, it can be seen the Extreme Learning Machine has good performance for this research.
Perbandingan Metode Adaptive Neuro-Fuzzy Inference System dan Support Vector Regression dalam Prediksi Waktu Pemeliharaan pada Mesin E-Fill Ii Munadhif; Deni Almunawar; Ryan Yudha Adhitya
Jurnal Teknologi Maritim Vol. 7 No. 2 (2024): Jurnal Teknologi Maritim
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Perkapalan Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35991/jtm.v7i2.31

Abstract

Penelitian ini bertujuan membandingkan kinerja metode Adaptive NeuroFuzzy Inference System (ANFIS) dan Support Vector Regression (SVR) dalam memprediksi waktu pemeliharaan yang optimal pada mesin pengisian cairan otomatis atau yang biasa disebut mesin e-fill. Mesin e-fill banyak digunakan oleh industri produsen untuk mengemas produk cairan mereka ke dalam kemasan botol. Mesin ini sering mengalami kerusakan yang dapat mengganggu proses produksi dan menimbulkan kerugian bagi perusahaan. Oleh karena itu, prediksi waktu pemeliharaan yang tepat sangat penting agar perusahaan dapat mempersiapkan dana dan antisipasi sebelum terjadi kerusakan yang lebih parah. Penelitian ini mengumpulkan data historis parameter operasional mesin e-fill seperti performance, quality, dan availability. Data tersebut kemudian dibagi menjadi data latih dan data uji. Data latih digunakan untuk melatih model prediksi ANFIS dan SVR agar dapat memprediksi waktu pemeliharaan mesin. Data uji digunakan untuk mengevaluasi akurasi prediksi dari kedua model. Model ANFIS dilatih dengan menyesuaikan parameter-parameternya agar sesuai dengan pola pada data latih. Model SVR juga dilatih dengan data latih agar parameternya dapat mengenali pola data. Kinerja kedua model dievaluasi dengan metrik RMSE pada data uji. Metode Support Vector Regression (SVR) memiliki rata-rata Accuracy yang lebih tinggi, yaitu 91,67%, dibandingkan dengan metode Adaptive Neuro-Fuzzy Inference System (ANFIS) yang memiliki rata-rata Accuracy sebesar 68,33%. Hal ini menunjukkan bahwa SVR lebih akurat dalam memprediksi waktu pemeliharaan pada mesin e-fill di berbagai tingkat RPM.
Development of a Prototype System for Monitoring and Controlling Apple Cider Vinegar Fermentation Using IoT-Based Fuzzy Methods Hannisa Kautsarani Hamidah; Agus Khumaidi; Ii Munadhif; Ryan Yudha Adhitya
International Journal of Mechanical, Electrical and Civil Engineering Vol. 1 No. 3 (2024): July : International Journal of Mechanical, Electrical and Civil Engineering
Publisher : Asosiasi Riset Ilmu Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/ijmecie.v1i3.35

Abstract

The apple cider vinegar fermentation process requires careful monitoring and control of variables such as pH, alcohol content, and amount of acetic acid. This research adopts Fuzzy Logic Control by utilizing the MQTT communication protocol, pH, alcohol and water pump sensors, as well as solenoid valves and DC motors as actuators. This Internet of Things (IoT) based solution provides real-time monitoring information on the fermentation process. The results showed that the test system succeeded in maintaining a stable pH of around 3.9-4.0 during the initial stages of fermentation, while industrial data showed greater variations. Alcohol content increased consistently in the test system, in contrast to the spike on day 7 in industry data. At the formulation stage, the pH dropped to 3.68 in the test system, while the industry maintained 3.70. At medium and slow mixing stages, the test system showed a significant decrease in pH and a consistent increase in alcohol. At the harvest stage, the pH was lower in the test system compared to industrial, with slightly higher alcohol content. Test results show that the implementation of this system can reduce the fermentation process time by up to 2 days faster compared to conventional methods. This conclusion shows that IoT-based systems are able to provide better control and monitoring than conventional systems, so they have great potential for wider adoption in the apple vinegar fermentation industry to increase production effectiveness.
Deteksi Anomali Jalur Pelayaran Alur Laut Kepulauan Indonesia II (ALKI II) Berbasis Data AIS dengan Mean Fullstack Application Abdullah Fiqru Siech; Afif Zuhri Arifianto; Mohammad Khoirul Hasin; Ryan Yudha Adhitya; Ii Munadhif; Mustika Kurnia Mayang Sari
JPNM Jurnal Pustaka Nusantara Multidisiplin Vol. 3 No. 2 (2025): July : Jurnal Pustaka Nusantara Multidisiplin
Publisher : SM Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59945/jpnm.v3i2.463

Abstract

Pengelolaan lalu lintas maritim yang efektif menjadi tantangan penting dalam dunia modern, terutama dengan meningkatnya volume transportasi laut yang membutuhkan sistem navigasi yang aman dan efisien. Automatic Identification System (AIS) berperan penting dalam memantau pergerakan kapal, namun kemampuan sistem ini dalam mendeteksi perilaku anomali dan mengelola zona geografis tertentu masih terbatas. Jurnal ini bertujuan untuk mengembangkan sistem AIS berbasis teknologi Geovience dan Anomaly Detection dengan memanfaatkan kerangka kerja Angular pada front-end dan Node.js Express TypeScript pada back-end. Sistem ini dirancang untuk memproses data AIS yang diterima dalam format NMEA dari port maritim, yang kemudian didekode dan disimpan ke dalam basis data MongoDB. Teknologi geovience digunakan untuk menentukan zona navigasi yang aman, sementara deteksi anomali berbasis aturan diterapkan untuk mengidentifikasi aktivitas kapal yang tidak wajar, seperti pelanggaran rute atau kecepatan melebihi ambang batas. Hasil pemrosesan data divisualisasikan melalui antarmuka berbasis peta interaktif yang memungkinkan operator memantau lalu lintas kapal secara real-time dan menerima notifikasi terkait anomali. Pengembangan sistem ini mencakup beberapa langkah utama, mulai dari pemrosesan data AIS, implementasi geovience, pengembangan algoritma anomaly detection, hingga integrasi komponen back-end dan front-end. Hasil akhir dari tugas akhir ini adalah sebuah sistem yang mampu memberikan solusi terpadu untuk mendukung efisiensi dan keamanan navigasi maritim, dengan potensi aplikasi lebih lanjut pada pengelolaan wilayah perairan skala besar.
Pengiriman Data Realtime PLC ke ERP Odoo dengan Dilengkapi Analisa OEE Fiqrotin Nur Asita; Muhammad Khoirul Hasin; Zindhu Maulana Ahmad Putra; Ryan Yudha Adhitya; Imam Sutrisno
CSRID (Computer Science Research and Its Development Journal) Vol. 15 No. 3 (2023): October 2023
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/csrid-.15.3.2023.213-225

Abstract

With the integration of IT (Information Technology) and OT (Operational Technology), the data generated by the OT system can be easily processed and analyzed using the IT system, thereby synergistically increasing the efficiency and productivity of the company. In addition, to maximize machine performance, the Overall Equipment Effectiveness (OEE) method can be applied to monitor production results. Therefore, the authors designed an integration system based on a software connector to connect the Programmable Logic Controller (PLC) with Enterprise Resources Planning (ERP) Odoo. This system facilitates three communication protocols, namely Modbus TCP/IP, Ethernet/IP, and Profinet. As proof of the success of the connector software, a bottle-sorting plant controlled by PLC was made. The data from the plant is acquired by the connector software and sent in real-time to ERP Odoo. In ERP Odoo, an analysis is carried out through manufacturing modules that are custom-made by applying the OEE method as a step in monitoring the production process. Through research conducted, this integration system has been successfully designed and implemented in a bottle-sorting plant. The results of a comparison between manual OEE calculations and OEE calculations in ERP Odoo found an error of 0.161%. Thus, the IT and OT integration system created has been successful and has made the production process more efficient and has provided significant benefits to the company
Integrasi Sistem ESP32 dengan Pemantauan Cuaca Menggunakan Sensor Meteorologi Prayoga, Yusma'el Khammi; Arfianto, Afif Zuhri; Riananda, Dimas Pristovani; Muhammad Khoirul Hasin; Adianto; Ryan Yudha Adhitya
Journal of Applied Smart Electrical Network and Systems Vol 6 No 01 (2025): Vol 06, No. 01 June 2025
Publisher : Indonesian Society of Applied Science (ISAS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52158/jasens.v6i01.1149

Abstract

This study proposes an ESP32-based system integration for real-time weather monitoring using meteorological sensors including wind speed, wind direction, and rainfall sensors. ESP32 is chosen as the main platform because of its capability in wireless communication (Wi-Fi and Bluetooth) and its efficiency in processing sensor data with low power consumption. This system combines meteorological sensors to measure wind speed, wind direction, and rainfall, which are then displayed directly on the Nextion screen. The collected data will be updated in real-time, providing easily accessible information. The purpose of this study is to develop an effective and integrated weather monitoring system. The test results show that this system can collect and display data accurately on Nextion, providing an efficient and practical weather monitoring solution.