Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : agriTECH

Rancangbangun Aktuator Pengendali Iklim Mikro di dalam Greenhouse untuk Pertumbuhan Tanaman Sawi (Brassica rapa var.parachinensis L.) Mareli Telaumbanua; Bambang Purwantana; Lilik Sutiarso
agriTECH Vol 34, No 2 (2014)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (862.778 KB) | DOI: 10.22146/agritech.9512

Abstract

Cultivation of mustard (Brassica var rappa Parachinensis L.) in the field has many obstacles such as pests, wind, flood, temperature, soil moisture, and solar radiation which are able to  distrurb the plant growth. The impact is distrubing of plant growth thus affecting productivity. Cultivation in greenhouse is an appropriate alternative to controlling the constraints. Control system for microclimate greenhouse was designed using microcontroller ATMega8535. The system was developed using five sensors i.e.: air temperature and humidity, soil temperature, soil moisture, and solar radiation and three actuators, i.e.: fan actuator, water pump actuator, and artificial photosynthesis light actuator. The equipment of control was placed in the greenhouse and connected to computer for sending microclimate data for 32 days of observation. The result revealed that fan actuator has accuracy of 95,46% with speed controlling temperature of 58,70 minute. The efficiency of water pump actuator was 98,01%, with the speed to controls soil moisture of 31,83 minute. Photosynthetic light actuator showed the speed of response to the setting point of photosynthesis light <1 sec (± 10 ms). The experimental research showed that the high,  dimensions of leaves, weight, and the number of leaves of mustard plant in the greenhouse were better than plant outside the greenhouse.ABSTRAKBudidaya tanaman sawi (Brassica rapa var. parachinensis L.) di lahan terbuka memiliki banyak  kendala seperti serangan hama, angin, banjir, suhu lingkungan, kelengasan tanah hingga penyinaran yang tidak sesuai dengan syarat pertumbuhan tanaman. Dampaknya adalah terganggunya pertumbuhan tanaman sehingga mempengaruhi produktivitas. Budidaya tanaman di rumah tanaman (greenhouse) merupakan alternatif yang baik untuk mengontrol kendala tersebut. Sistem kontrol pengendalian iklim mikro untuk greenhouse telah dirancang dengan menggunakan mikrokontroler AVR ATMega8535. Sistem kontrol dikembangkan dengan menggunakan lima sensor yaitu sensor suhu dan kelembaban lingkungan, sensor suhu tanah, sensor kelengasan tanah, dan sensor intensitas sinar matahari.  Rancangan memiliki tiga aktuator yaitu aktuator kipas, aktuator pompa air, dan aktuator lampu fotosintesis. Rancangan diletakkan di dalam greenhouse yang terhubung dengan komputer untuk mengirim data iklim mikro selama 32 hari pengamatan. Melalui penelitian ini telah dihasilkan aktuator kipas yang memiliki nilai akurasi 95,46% dengan nilai kecepatan pengendalian untuk mengendalikan suhu 58,70 menit. Aktuator pompa air menunjukkan  nilai akurasi 98,01%, dengan kecepatan mengendalikan kelengasan tanah 31,83 menit. Aktuator lampu fotosintesis menunjukan nilai kecepatan respon terhadap nilai setting point untuk menyalakan lampu fotosintesis < 1 detik (± 10 mS). Hasil penelitian menunjukkan, bahwa tanaman yang berada di dalam greenhouse memiliki tinggi, dimensi daun, berat basah, dan jumlah daun yang lebih baik dibandingkan dengan di luar greenhouse.
Studi Pola Pertumbuhan Tanaman Sawi (Brassica rapa var. parachinensis L.) Hidroponik di dalam Greenhouse Terkontrol Mareli Telaumbanua; Bambang Purwantana; Lilik Sutiarso; Mohammad Affan Fajar Falah
agriTECH Vol 36, No 1 (2016)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.973 KB) | DOI: 10.22146/agritech.10690

Abstract

The vegetables should be cultivated in an optimal way to obtain maximum yield. In tropical regions such in Indonesia, the growth of vegetables are influenced by climate factors such as humidity, temperature, nutrients and light. To gain the optimal and controlled condition during the growth periode, mustard plants could be cultivated hydroponically in a greenhouse. This study was conducted to identify the growth pattern of mustard (Brassica rappa var. Parachinensis L.) that hydroponically planted in a greenhouse which is equipped with a temperature, nutrients and light control. The aim of this research is to determine the best factors combination that provide the most optimum growth. This research was conducted by three treatments that were temperature, nutrition, and light. Each of the treatment has three variations : temperature (32 °C, 35 °C, and 38 °C), nutrition (2 mS/cm, 5 mS/cm, and 8 mS/cm), and light (7000 lux, 12000 lux, and 17000 lux) so there were 27 cultivation spaces or greenhouses used with different micro-climates. The growth rate was determined by the area of the leaf and it was measured during 48 days of cultivation. Control in each greenhouse is done by a pump actuator, incandescent bulbs and TL lamps. The result showed that temperature, nutrients and light affect on the growth of mustard. By single factor analysis, we found that maximum leaf area was produced at a temperature of 35 °C that was 565 cm-, nutrition 5 mS/cm that was 639.27 cm- and 17000 lux light that was 697.42 cm-. In short, the best growth rate was obtained at a temperature of 35 °C, nutrition of 5 mS/cm, and 17000 lux of light yield 1068.82 cm- of leaf area.ABSTRAKTanaman sayuran harus dibudidayakan dengan optimal agar diperoleh hasil yang maksimal. Di wilayah tropis seperti di  Indonesia,  pertumbuhan  tanaman  sayuran  dipengaruhi  oleh  beberapa  faktor  iklim  seperti  kelembaban,  suhu, nutrisi dan cahaya. Untuk memperoleh kondisi yang optimal dan terkendali selama periode pertumbuhan, tanaman sawi dibudidayakan secara hidroponik di dalam greenhouse. Penelitian ini dilakukan untuk mengidentifikasi pola pertumbuhan tanaman sawi (Brassica  rappa var. parachinensis L.) yang dibudidayakan secara hidroponik di dalam greenhouse yang dilengkapi dengan kendali suhu, nutrisi dan cahaya. Tujuan penelitian adalah menentukan kombinasi faktor terbaik yang memberikan pertumbuhan paling optimal. Penelitian dilakukan dengan memberikan tiga perlakuan dengan tiga variasi yaitu suhu (32 °C, 35 °C, dan 38 °C), nutrisi (2 mS/cm, 5 mS/cm, dan 8 mS/cm), dan cahaya (7000 lux, 12000 lux, dan 17000 lux) sehingga terdapat 27 ruang budidaya atau greenhouse dengan iklim mikro yang berbeda. Tingkat pertumbuhan ditentukan berdasarkan luas daun dan diukur selama 48 hari budidaya. Kendali di dalam masing- masing greenhouse dilakukan oleh aktuator pompa, lampu pijar dan lampu TL (Flourescent Lamp). Hasil penelitian menunjukkan suhu, nutrisi dan cahaya berpengaruh pada pertumbuhan tanaman sawi. Dari hasil analisis faktor tunggal, luas daun maksimum dihasilkan pada suhu 35 °C yaitu 565 cm-, nutrisi 5 mS/cm yaitu 639,27 cm- dan cahaya 17000 lux yaitu 697,42 cm-. Secara kombinasi, tingkat pertumbuhan terbaik diperoleh pada perlakuan suhu 35 °C, nutrisi 5 mS/cm, dan cahaya 17000 lux dengan hasil luas daun mencapai 1068,82 cm-.
Desain Sensor Suhu dan Kelengasan Tanah untuk Sistem Kendali Budidaya Tanaman Cabai (Capsicum annuum L.) Sugeng Triyono; Mareli Telaumbanua; Yessi Mulyani; Titin Yulianti; Muhammad Amin; Agus Haryanto
agriTECH Vol 38, No 4 (2018)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.33 KB) | DOI: 10.22146/agritech.29095

Abstract

Cultivation crop is influenced by soil, water, climate, and crop properties. Air temperature is one of climate parameters which is considered for plant growing. Soil moisture represents soil and water factors and it generally plays an important role in crop cultivation. A crop requires soil moisture and air temperature for an optimum growth. a control system is proposed to create an optimum air temperature and soil moisture to support plant growth. The aim of this study was to design a precision measurement instrument, a control system that is able to control microclimate (air temperature and soil moisture) for optimal growth of chili (Capsicum annuum L.) crops. A design of environmental control was applied by using sensors for air temperature and soil moisture. Microcontrollers were connected to sensors with the water pump actuator and the irrigation pump through a relay module and a TIP122 transistor. The accuracy of DHT 22 temperature sensors and soil moisture sensors were calculated based on the approximate coefficient of determination, and the total errors of each sensor. The actuator performance in this design included the response rates and the duration of the working time. The performance tests were conducted 3 times without using chili plants. The coefficient of determination (R²) of temperature sensor 1, temperature sensor 2 and temperature sensor 3 were 0.999, 0.999, and 0.999, respectively. The total errors of the three sensors were -0.071 ºC, -0.085 ºC, and 0.014ºC, respectively. The coefficient of determination (R ²) of the soil moisture sensor 1, the soil moisture sensor 2, and the soil moisture sensor were 0.888, 0.8401, and 0.8963, respectively. The mean total errors for these three types of ranging sensors were -0.2204%, -0.0952% and -2.8049%, respectively.
Pengendalian Temperatur dan Kelembaban dalam Kumbung Jamur Tiram (Pleurotus sp) Secara Otomatis Berbasis Mikrokontroler Sri Waluyo; Ribut Eko Wahyono; Budianto Lanya; Mareli Telaumbanua
agriTECH Vol 38, No 3 (2018)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.743 KB) | DOI: 10.22146/agritech.30068

Abstract

Oyster mushroom can grow properly at temperatures of 16–30 °C and relative humidity of 80–95%. Environment conditioning by spraying of water in mushroom house manually in the morning and evening as the temperature and humidity controling is less effective and highly bothersome. Using of technology can controlling temperature and humidity in a mushroom house automatically.  This research aims to design an automatic control system to control temperature and humidity in oyster mushroom house. Research is located at an altitude of 125 meters above sea level. Automatic control system with a setting point temperature of 25 – 30 °C and humidity of 80 – 95% was tested at mushroom house with dimensions of 4 × 2 × 2 m with a capacity of 600 baglog mushrooms.  The results show that the performance of daily temperature and humidity without control is respectively 24.10 to 35.19 °C and 64.28 to 99.90%. While the temperature and humidity with the control system are 25.10 to 30.09 °C and 80.84 to 99.90%, respectively.
Co-Authors Adi Susilo Agus Haryanto Agus Haryanto Agus Haryanto Agustin, Stefani Silvi Ahmad Suudi Aldo Christian Alvin Fatikhunnada, Alvin Amieria Citra Gita Amieria Citra Gita Andi Setiadi Andrianto, Rifqi Rhama Anggia Indriyani Annisa Nur Rachmawaty Asil Barus Attamimi, Tahani Farhat Bambang Purwantana Bambang Purwantana Br Ginting, Daria Budianto Lanya Budianto Lanya Cicih Sugianti Cicih Sugianti Dermiyati Dermiyati Diding Suhandy Eka Yana Ekaliana Ekaliana Eko Putra Elhamida Rezkia Amien Febryan Kusuma Wisnu Fil'aini, Raizummi Fil’aini, Raizummi Gigih Forda Nama Gita, Amiera Citra Herry Wardono Huda, Zulmiftah Imam Santosa Indriyawati, Agapetalia Irza Sukmana Jordy, Abdul Rachman Juanto, Benedictus khusnul khotimah Kiromah, Isrofiatul Kurniawan, Ahmad Ridho Kus Hendarto Lilik Sutiarso Lilik Sutiarso Marcus, Patrice Kevin Martinus Martinus Martinus, Martinus Meinilwita Yulia Meizano Ardhi Muhammad Meizano Ardi Muhammad Meizano Ardi Muhammad Mohammad Affan Fajar Falah Mufidah, Zunanik Muhammad Amin Muhammad Haviz Muhammad Pijar Muhammad, Meizano Ardhi Mulyani, Yessi murwanto, bambang Novi Apratiwi Panji Kurniawan Pulung Karo-Karo Purnomo, Cahyo Eko Putri, Laily Rahmadani Ribut Eko Wahyono Ridho Nurrohmanysah Rifqi Rhama Andrianto Ristanti Ristanti Riszal, Akhmad Rizza Wijaya Sandi Asmara Saputra, Muhamad Ogas Setiawan, Wahyu Hendi Simanjuntak, Fajar Agustus Siti Suharyatun Sony Ferbangkara Sri Rahayoe Sri Waluyo Sri Waluyo Sugeng Triyono Suskandini Ratih Dirmawati Syah, Aminudin Tamrin Tamrin Telaumbanua, Syukur Telaumbanua, Syukur F Teuku Irmansyah Titin Yulianti Tri Novita Sari, Tri Novita Tri Wahyu Saputra Tri Wahyu Saputra Trisya Septiana Valentino, Fandy Warji Warji Winda Rahmawati Winda Rahmawati Winda Rahmawati Winda Rahmawati Winda Rahmawati Wisnu, Febrian Kusuma Yohannes C Ginting