Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA

Pengaruh Matriks Kombinasi Alginat:Gelatin (2%:1%) terhadap Karakteristik dan Aktivitas Antibakteri Mikrosfer Probiotik Lactobacillus acidophilus Tutiek Purwanti; Ria Puspita; Tristiana Erawati
JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA Vol. 6 No. 1 (2019): JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.761 KB) | DOI: 10.20473/jfiki.v6i12019.44-50

Abstract

Pendahuluan: Mikrosfer adalah salah satu sistem penghantaran obat yang dapat digunakan untuk menghantarkan obat pada pemakaian secara oral maupun topikal. Efektivitas mikrosfer sebagai sistem penghantar obat antara lain dipengaruhi oleh polimer penyusun matriknya. Tujuan: Tujuan dari penelitian ini  untuk mengetahui pengaruh matrik natrium alginate 2% : gelatin 1%  terhadap karakteristik mikrosfer probiotik yaitu ukuran, efisiensi penjebakan, dan aktivitas antibakteri yaitu diameter zona hambatnya. Metode: Dibuat mikrosfer probiotik dengan matriks berbeda yaitu kombinasi alginate:gelatin (2%:1%) (F-I), matriks alginat 3% (F-II) dan matriks gelatin 3% (F-III). Mikrosfer probiotik dibuat dengan teknik ekstrusi dan dikeringkan menggunakan oven. Hasil: Hasil pemeriksaan karakteristik menunjukkan bahwa rerata ukuran partikel F-I, F-II, dan F-III berturut-turut adalah 8,03 µm, 9,69 µm, dan 5,40 µm. Efisiensi penjebakan F-I, F-II, dan F-III berturut-turut adalah  77,48 %, 84,20 %, dan 87,93 %. Sedangkan hasil uji aktivitas antibakteri, diperoleh diameter zona hambat F-I, F-II, dan F-III berturut-turut  adalah  11,72 ± 0,58 mm , 9,8 ± 0,57 mm, dan  9,27, ± 0,19 mm. Hasil uji statistik dengan metode ANOVA yang dilanjutkan uji HSD menunjukkan adanya perbedaan signifikan pada ukuran, efisiensi penjebakan maupun  diameter zona hambat antara mikrosfer probiotik F-I, F-II, F-III. Kesimpulan: Disimpulkan bahwa mikrosfer probiotik F-I dengan matriks kombinasi alginat:gelatin  (2%:1%) memiliki ukuran yang lebih kecil dari F-I (matriks alginat 3%) dan lebih besar dari F-III (matriks gelatin 3%). Mikrosfer probiotik F-I memiliki harga efisiensi penjebakan paling rendah, tetapi memiliki aktivitas antibakteri paling besar dibandingkan dengan mikrosfer probiotik F-II dan F-III.
Characteristic and Physical Stability of Anti-Aging Green Tea Extract (GTE) on NLC with Argan Oil as Liquid Lipid Anita Natalia Suryawijaya; Tutiek Purwanti; Djoko Agus Purwanto; Widji Soeratri
JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA Vol. 9 No. 2 (2022): JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jfiki.v9i22022.115-124

Abstract

Background: Green tea extract is a hydrophilic antioxidant that is difficult to penetrate. A nanostructured lipid carrier (NLC) delivers a system consisting of solid-liquid lipids that can improve penetration. Argan oil is a vegetable oil that can be used as a liquid lipid in NLC, reducing particle size and increasing penetration by hydrating the skin. Objective: To determine the formula of NLC green tea extract (NLC-GTE) with liquid lipid argan oil, which has good characteristics and is stable. Methods: Preparation of NLC-GTE used the High Shear Homogenization with solid lipids (cetyl palmitate-glyceryl stearate) - liquid lipids (argan oil) NLC-GTE1 (50:50), NLC-GTE2 (70:30), and NLC-GTE3 (90:10). Characteristic tests included organoleptic, pH, particle size (PS), and polydispersity index (PI). The physical stability test (organoleptic, pH, PS, and PI) used the thermal cycling method (3 cycles six days). Result: NLC-GTE1 – NLC-GTE2 has an odor of argan oil. NLC-GTE3 has odorless. NLC-GTE1 – NLC-GTE3 has a pH scale from 5.782-5.784; PS ranges from 359.73–432.56 nm; PI ranges from 0.175-0.257. The statistical analysis results showed no significant difference between NLC-GTE1 – NLC-GTE3 in pH and PI, there was a significant difference in PS NLC-GTE1; NLC-GTE2 against NLC-GTE3. Physical stability test NLC-GTE2 – NLC-GTE3 phase separation occurs. The statistical analysis results showed no significant difference in pH values NLC-GTE1 – NLC-GTE3 "‹"‹before and after storage; there was a significant difference in NLC-GTE3 before and after storage. Conclusion: NLC-GTE1 was a formula with good characteristics and stability.
Characterization of Spanlastic System Loaded Green Tea Extract as Antioxidant for Skin Evelyne Santuso; Widji Soeratri; Tutiek Purwanti
JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA Vol. 10 No. 1 (2023): JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jfiki.v10i12023.30-37

Abstract

Background: Green tea possesses abundant polyphenols that exert antioxidant activity. However, green tea's hydrophilicity and instability limit its penetration into the skin layers. Recently, a non-ionic surfactant-based elastic nanovesicular system called spanlastic can enhance the delivery of hydrophilic and unstable substances. Spanlastic composed of vesicle builder and edge activator, which influence the characteristics of the vesicle.  Objective: The study aimed to evaluate the influence of the ratio of the components on the characterization of green tea extract-loaded spanlastic using three different weight ratio of vesicle builder and edge activator that is 7:3, 8:2, and 9:1. Methods: Spanlastic is prepared by ethanol injection methods using Span 60 as vesicle builder (VB) and Tween® 60 as edge activator (EA). The characterization includes visually observed organoleptic, particle size (PS) and polydispersity index (PDI) using dynamic light scattering, entrapment efficiency (EE) and drug loading (DL) using total phenolic content assay. The most optimum ratio will be tested its zeta potential value using Zetasizer and viscosity using Brookfield Cone and Plate. Results: Selected spanlastic formula composed of Span 60 and Tween® 60 at a weight ratio of 8:2 has given characteristics as follows: entrapment efficiency 60.85±1.70%; drug loading 11.07±0.65%; the particle size is 419.70±7.42 nm; and  PDI value 0.26±0.05. The prepared spanlastic has a greenish liquid form, with a zeta potential value of 28.53±2.78 mV and viscosity of 14.65±0.32 cP. Conclusion: The optimum weight ratio of vesicle builder and edge activator for green tea extract spanlastic is Span 60:Tween® 60 8:2.
Effect of Different Lipid Ratios on Physicochemical Stability and Drug Release of Nanostructured Lipid Carriers Loaded Coenzyme Q10 Abdulloh Suyuti; Esti Hendradi; Tutiek Purwanti
JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA Vol. 10 No. 1 (2023): JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jfiki.v10i12023.44-53

Abstract

Background: For treatment or skin care via topical route, Coenzyme Q10 needs to permeate the epidermis which it is practically insoluble in water and a high molecular weight that make it difficult to penetrate the skin. Nanostructured Lipid Carriers (NLC) is chosen because of its ability to dissolve and solve the problem of low skin permeation. The type and ratio of solid and liquid lipids used in NLC affect the physicochemical characteristics, thus affecting the release profile and system stability. Objective: This study aimed to determine the effect of various ratios of Compritol 888 ATO as solid lipid and Miglyol 812 as liquid lipid on the physicochemical stability and Coenzyme Q10 release profile of NLC system. Methods: NLC was prepared using High Shear Homogenization method with three different lipid ratios. The ratio of Compritol 888 ATO : Miglyol 812 was 70:30, 80:20, and 90:10, respectively. NLC was evaluated for drug release and stability parameters including organoleptic, particle size, polydispersity index (PI), pH, viscosity, assay, and entrapment efficiency. Results: The stability test result for 90 days showed increments in the particle size and viscosity, whereas for assay and entrapment efficiency were decreased. The release test results showed no significant difference in the release parameters of the three tested formulas. Conclusion: During stability evaluation, NLC-CoQ10 systems did not significantly change pH and PI values, but statistically significantly changed particle size, viscosity, assay, and entrapment efficiency. The different in lipid ratios used in the formulas did not show significantly different results for release parameters.