Claim Missing Document
Check
Articles

Sistem Informasi Profil SDN 1 Mambalan Berbasis Website Menggunakan Metode Waterfall: Web-Based Information System for SDN 1 MAMBALAN Fitrah, Muhammad Dinul; Wijaya, I Gede Pasek Suta; Awaluddin
Jurnal Begawe Teknologi Informasi (JBegaTI) Vol. 5 No. 1 (2024): JBegaTI
Publisher : Program Studi Teknik Informatika, Fakultas Teknik Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jbegati.v5i1.1188

Abstract

Di era melek teknologi yang serba menggunakan internet ini, website merupakan salah satu media penyampaian informasi secara cepat dan efektif. Yang terjadi di SDN 1 Mambalan, pemanfaatan teknologi informasi belum sepenuhnya dimanfaatkan seefektif mungkin dikarenakan belum memiliki website sekolah resmi untuk dijadikan sebagai media informasi seputar SDN 1 Mambalan. Website sekolah yang dibuat dapat dijadikan sebagai media penyampaian informasi yang dapat diakses oleh siswa, guru, maupun pihak luar sekolah.Website SDN 1 Mambalan ini berisikan informasi tentang profil sekolah yaitu Deskripsi, strukur organisasi, visi dan misi,data guru dan staff yang ada pada SDN 1 Mambalan, Data orang yang bertanggung awab atas website ini, berita dan pengumuman yang akan dibagikan. Website sekolah ini juga menjadi salah satu sarana siswa untuk mendukung kegiatan belajar mengajar dimana dapat memberikan informasi mengenai perkembangan sekolah. Pembuatan website sekolah ini menggunakan html dan database untuk memudahkan pengguna website dalam mengelola data yang ada pada sekolah.
SOSIALISASI PEMASARAN DIGITAL BAGI PELAKU UMKM DI DESA JURIT, LOMBOK TIMUR, NTB: Digital Marketing Socialization for Small and Medium Enterprises on Jurit Village East lombok Bimantoro, Fitri; Wijaya, I Gede Pasek Suta; Dwiyansaputra, Ramaditia; Nugraha, Gibran Satya; Husodo, Ario Yudo; Hamidi, Mohammad Zaenuddin; Akhyar, Halil; Darmawan, Riski
Jurnal Begawe Teknologi Informasi (JBegaTI) Vol. 5 No. 2 (2024): JBegaTI
Publisher : Program Studi Teknik Informatika, Fakultas Teknik Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jbegati.v5i2.1272

Abstract

Terletak di sebelah Selatan kaki gunung Rinjani, desa Jurit yang terletak di Lombok Timur merupakan salah satu desa yang memiliki sumber daya yang melimpah. Desa Jurit dengan mayoritas petani memiliki produk unggulan berupa Nanas. Saat ini, dengan perkembangan teknologi yang begitu pesat, tentu penggunaan teknologi menjadi salah satu faktor yang mampu mendongkrak kualitas hidup Masyarakat pada umumnya. Tentu hal itu juga menjadi fokus utama pengabdian di desa Jurit, yakni akan menyoroti tentang penggunaan digital marketing sebagai alat untuk meningkatkan penjualan berbasis digital, tentunya harapannya dapat meningkatkan pendapatan para petani dan pelaku usaha kecil dan menengah yang ada di desa Jurit. Pada prosesnya, sosialisasi ini memperkenalkan dan melatih pelaku usaha untuk menggunakan media pemasaran seperti media sosial, e-commerce, dan aplikasi mobile lainnya, dengan tujuan pelaku usaha mampu memahami dan menggunakan strategi digital yang baik seperti pemasaran digital, search engine optimizer, penggunaan media sosial dan tentunya e-commerce. Sehingga pada praktiknya, kegiatan ini tidak hanya berfokus pada cara penggunaan teknolginya, namun juga bagaimana mengenalkan dan menanamkan mindset dan model bisnis digital yang akan membantu peningkatan dan keberlangsungan pelaku usaha pada masa depan.
Early Detection of Asymptomatic Covid-19 Infection with Artificial Neural Network Model Through Voice Recording of Forced Cough Nisa, Aisyah Khairun; Wijaya, I Gede Pasek Suta; Aranta, Arik
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1812

Abstract

SARS-CoV-2 is a virus that spreads the infection known as COVID-19, or Coronavirus 2019. According to data from the World Health Organization as of March 15, 2021, Indonesia has 1,419,455 cumulative cases and 38,426 cumulative deaths, ranking third among countries in terms of fatalities, behind Iran and India. Because COVID-19 was disseminated through direct contact with respiratory droplets from an infected individual, it spread swiftly and widely. According to the American Centers for Disease Control and Prevention, more than 50% of transmission rates are anticipated from asymptomatic individuals. The antigen tests have an accuracy of results ranging from 80–90% and are utilized for early detection of COVID-19. The cost of the antigen test is set to increase as of September 3, 2021, with prices ranging from IDR 99.000 to IDR 109.000; however, researchers are steadfastly searching for the best alternate methods for the early diagnosis of COVID-19. According to MIT News Office, a forced cough recording can identify an asymptomatic COVID-19 infection. Through the vocal recording of a forced cough, this study uses an artificial neural network (ANN) deep learning model to identify asymptomatic COVID-19 patients. The Artificial Neural Network (ANN) can distinguish asymptomatic people from forced cough recordings with an accuracy of up to 98% and a loss value of less than 3% by employing oversampling data. This model can be applied as a free, universal method for the early identification of COVID-19 infection.
Analyzing Coverage Probability of Reconfigurable Intelligence Surface-aided NOMA Widodo, Agung Mulyo; Wijayanto, Heri; Wijaya, I Gede Pasek Suta; Wisnujati, Andika; Musnansyah, Ahmad
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.2054

Abstract

Along with the explosive growth of wireless communication network users who require large frequency bands and low latency, it is a challenge to create a new wireless communication network beyond 5G. This is because installing a massive 5G network requires a large investment by network providers. For this reason, the authors propose an alternative beyond 5G that has better quality than 5G and a relatively lower investment value than 5G networks. This study aims to analyze the downlink of the cooperative non-orthogonal multiple access (NOMA) network, which is usually used in 5G, combined with the use of a reconfigurable intelligence surface (RIS) antenna with decode and forward relay mechanisms. RIS is processed with a limited number of objects utilizing Rayleigh fading channels. The scenario is created by a user who relays without a direct link for users near the base station and with a direct link for users far from the base station. Under the Nakagami-m fading channel, the authors carefully evaluated the probability of loss for various users as a function of perfect channel statistical information (p-CSI) utilizing simply a single input-output (SISO) system with a finite number of RIS elements. As a key success metric, the efficiency of the proposed RIS-assisted NOMA transmission mechanism is evaluated through numerical data on the outage probability for each user. The modeling outcomes demonstrate that the RIS-aided NOMA network outperforms the traditional NOMA network
The Design of Convolutional Neural Networks Model for Classification of Ear Diseases on Android Mobile Devices Suta Wijaya, I Gede Pasek; Mulyana, Heru; Kadriyan, Hamsu; Fa'rifah, Riska Yanu
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1591

Abstract

An otorhinolaryngologist (ORL) or general practitioner diagnoses ear disease based on ear image information. However, general practitioners refer patients to ORL for chronic ear disease because the image of ear disease has high complexity, variety, and little difference between diseases. An artificial intelligence-based approach is needed to make it easier for doctors to diagnose ear diseases based on ear image information, such as the Convolutional Neural Network (CNN). This paper describes how CNN was designed to generate CNN models used to classify ear diseases. The model was developed using an ear image dataset from the practice of an ORL at the University of Mataram Teaching Hospital. This work aims to find the best CNN model for classifying ear diseases applicable to android mobile devices. Furthermore, the best CNN model is deployed for an Android-based application integrated with the Endoscope Ear Cleaning Tool Kit for registering patient ear images. The experimental results show 83% accuracy, 86% precision, 86% recall, and 4ms inference time. The application produces a System Usability Scale of 76.88% for testing, which shows it is easy to use. This achievement shows that the model can be developed and integrated into an ENT expert system. In the future, the ENT expert system can be operated by workers in community health centres/clinics to assist leading health them in diagnosing ENT diseases early.
Studi Pemodelan dan Prediksi Aktivitas Antibakteri Biopo-limer Kitosan Menggunakan Response Surface Methodology (RSM) Halil Akhyar; Selvira Anandia Intan Maulidya; Muhammad Mukaddam Alaydrus; Maz Isa Ansyori; Mohammad Zaenuddin Hamidi; I Gede Pasek Suta Wijaya; Ramaditia Dwiyansaputra; Pahrul Irfan
Jurnal Teknologi Informasi dan Multimedia Vol. 7 No. 2 (2025): May
Publisher : Sekawan Institut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v7i2.713

Abstract

Infections occured in the human are mostly caused by uncontrolled growth of Staphylococcus aureus bacteria. A strategy to inhibit bacterial growth can use antibacterial agents such as chitosan. The mechanism of the effectiveness of chitosan as an antibacterial is quite complex, even the data on its antibacterial activity is quite fluctuating so that it is difficult to analyze accurately and efficiently. Therefore, the purpose of the study was to predict the inhibition zone of s.aureus bacteria through laboratory experiments combined with modeling using the Central Composite Design (CCD) approach. The research was carried out with two main stages, including chitosan isolation and calculation of bacterial inhibition zones. The production of chitosan leverages the microwave isolation and FTIR to examine for the degree of deacetylation and its functional group using. Furthermore, the antibacterial activity of chitosan biopolymer was tested using the diffusion method combined with modeling using the RSM CCD approach. The results showed that chitosam from oyster shell was obtained by DD of 83.29% and the emergence of typical chitosan groups, such as amine (NH2) and hydroxyl (OH). Chitosan can hamper the growth of s. aureus bacteria with an inhibition zone of up to 0.40 mm. The experimental data were combined with computational modeling obtained the values of the determination coefficient R2 = 0.6083. The modeling was assessed by p-value of < 0.0001 and F-value of 13.46. Statistically, the obtained model is relevant to the relationship between the number of bacterial colonies and the concentration of chitosan solution with the bacterial inhibition zone. Based on numerical analysis and modeling, the predicted values of the number of s. aureus bacterial colonies and chitosan concentrations were 550,000 CFU/ml and 42.5%. Therefore, Pearl shells can be isolated into chitosan, as well as chitosan has the potential to be a good antibacterial agent. The model has good prediction performance, but it rquires to increase the number of point spreads and it is necessary to validate the prediction results to obtain actual predictions.
Comparative Analysis of YOLOv8 and HSV Methods for Traffic Density Measurement I Gede Pasek Suta Wijaya; Muhamad Nizam Azmi; Ario Yudo Husodo
Lontar Komputer : Jurnal Ilmiah Teknologi Informasi Vol. 15 No. 02 (2024): Vol. 15, No. 2 August 2024
Publisher : Institute for Research and Community Services, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/LKJITI.2024.v15.i02.p06

Abstract

Traffic density measurement is a critical component in traffic management and urban planning. This study addresses the challenge of accurately measuring traffic density by comparing the performance of the YOLOv8 segmentation method with the traditional HSV method. At the beginning of the abstract, we clearly present the problem of accurately measuring traffic density. The primary objective is to highlight the strengths and limitations of each method in terms of accuracy and reliability in traffic density estimation.The choice of segmenting the asphalt area rather than vehicle objects is justified by the need to understand how different segmentation approaches affect traffic density measurements. The HSV method involves converting images to the HSV color space, creating masks for specific areas, and measuring traffic density based on the asphalt area. This method, while straightforward, may not accurately capture the dynamic nature of vehicle movement. In contrast, the YOLOv8 segmentation method utilizes a deep learning approach to detect and segment vehicles, providing potentially more precise measurements. Experimental results from three locations demonstrate varying levels of traffic density. The YOLOv8 method results in a graph with a wavy pattern, reflecting the more detailed detection of vehicles. Conversely, the HSV method produces a linear pattern, indicating a more consistent but potentially less detailed measurement. Quantitative analysis shows that Location 2 has a higher traffic density compared to Locations 1 and 3, as indicated by the average number of detected vehicles per frame. This study provides a comprehensive understanding of the differences between HSV and YOLOv8 segmentation methods for traffic density measurement. The findings suggest that while YOLOv8 offers more detailed and dynamic detection, the HSV method provides a simpler yet effective approach for certain applications.
Co-Authors Adi Sugita Pandey Afwani, Royana Agitha, Nadiyasari Ahmad Musnansyah Ahmad Zafrullah Mardiansyah Akhyar, Halil Albar, Moh. Ali Aldian Wahyu Septiadi Andy Hidayat Jatmika Anita Rosana MZ Annisa Mujahidah Robbani Anugrah, Febrian Rizky Aprilla, Diah Mitha Aranta, Arik Ariessaputra, Suthami Arik Aranta Arik Aranta Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo Ario Yudo Husodo, Ario Yudo Ariyan Zubaidi Ariyan Zubaidi Awaluddin Ayu Rezki Azizah Arif Paturrahman Belmiro Razak Setiawan Budi Irmawati Budi Irmawati Bulkis Kanata Chaerus Sulton Chandra Adiguna Chandra Adiguna Cipta Ramadhani Darmawan, Riski David Arizaldi Muhammad Dedi Ermansyah Dina Juliani U M, Eka Ditha Nurcahya Avianty Dwitama, Aditya Perwira Joan Dwiyansaputra, Ramaditia Eet Widarini Fa'rifah, Riska Yanu Fachry Abda El Rahman Fadilah . Fahmi Syuhada Faqih Hamami Farhan Yakub Bawazir Fiena Efliana Alfian Firdaus, Asno Azzawagaam Fitrah, Muhammad Dinul Fitri Bimantoro Gibran Satria Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gibran Satya Nugraha Gou Koutaki Gunawan Haidra Rahman Halil Akhyar Hamidi, Mohammad Zaenuddin Hendy Marcellino Heri Wijayanto Heri Wijayanto Heri Wijayanto Hidayat, Lalu Ramdoni I B K Widiartha I Gde Putu Wirarama Wedaswhara W. I Made Budii i Suksmadana I Made Subiantara Putra I Putu Teguh Putrawan I Wayan Agus Arimbawa I Wayan Agus Arimbawa I Wayan Agus Arimbawa, I Wayan Agus Ida Bagus Ketut Widiartha Ida Bagus Ketut Widiartha Ida Bagus Ketut Widiartha Ida Nyoman Tegeh Adnyana Imam Arief Putrajaya Jayusman, Dirga Kadriyan, Hamsu Kansha, Lyudza Aprilia Keeichi Uchimura Keiichi Uchimura Keiichi Uchimura L. A. Syamsul Irfan Lalu Sweta Arif Lalu Zulfikar Muslim Lidia Ardhia Wardani Made Agus Dwiputra Mayzar Anas Maz Isa Ansyori Mega Laely Moh Ali Albar Moh. Ali Albar Muhamad Nizam Azmi Muhamad Syamsu Iqbal Muhammad Daden Kasandi Putra Wesa Muhammad Husnul Ramdani Muhammad Khaidar Rahman Muhammad Mukaddam Alaydrus Muhammad Naufal Rizqullah Muhammad Syulhan Al Ghofany Mulyana, Heru Murpratiwi, Santi Ika Mustiari, Mustiari Ni Nyoman Citariani Sumartha Ni Nyoman Kencanawati Nisa, Aisyah Khairun Novian Maududi Novita Nurul Fakhriyah Nugraha, Gibran Satya Nurhalimah Nurhalimah Obenu, Juanri Priskila Pahrul Irfan Pahrul Irfan Pandu Deski Prasetyo Putra, Chairul Fatikhin Rahmatin, Baiq Anggita Arsya Ramaditia Dwiyansaputra Ramaditia Dwiyansaputra Ramaditia Dwiyansaputra Ramdhani, Ghina Kamilah Ramlah Nurlaeli Rani Farinda Reza Rismawandi Rina Lestari Riska Yulianti Ristirianto Adi Romi Saefudin Rosalina Rosalina Salsabila Putri Rajani Said Santi Ika Murpratiwi Saputra, Muhammad Harpan Teguh Satya Nugraha, Gibran Selvira Anandia Intan Maulidya Setiawan, Lalu Rudi Siti Faria Astari Sri Endang Anjarwani Sri Endang Anjarwani Sri Endang Arjarwani Suhada, Destia Suksmadana, I Made Budi Sulfan Akbar Syaifullah Syaifullah Topan Khrisnanda Tri Erna Suharningsih Ulandari, Alisyia Kornelia Wahyu Alfandi Widodo, Agung Mulyo Wirarama Wedashwara Wisnujati, Andika Yogi Permana Yudo Husodo, Ario Zafrullah, Ahmad Zakiyah Rahmiati Zubaidi, Ariyan Zuhraini, Marlia Zul Rijan Firmansyah