Kristina Wijayanti
Department Of Mathematics, Faculty Of Mathematics And Natural Sciences Semarang State University

Published : 43 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Analysis of Mathematical Problem Solving Ability Based on Student Learning Stages Polya on Selective Problem Solving Model Manah, Nila Kumoro; Isnarto, Isnarto; Wijayanti, Kristina
Unnes Journal of Mathematics Education Vol 6 No 1 (2017): Unnes Journal of Mathematics Education
Publisher : Department of Mathematics, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujme.v6i1.10855

Abstract

The purpose of this study was to determine the thoroughness of VII grade students who taught by the Selective Problem Solving (SPS) model and to know the description of students' mathematical problem solving ability based on Polya's stages on SPS learning model. Data collection method used the method of participant observation, tests, interviews, and documentation.The method used in this study is a mixed methods with sequential explanatory design where the first stage of research used quantitative methods, and the second stage used qualitative methods. The subjects of this research are six students from VII D grade of SMPN 41 Semarang consist of: two students from top group, two students from middle group, and two students from lacking group in mathematical problem solving ability test. The results showed that: (1) mathematics learning in VII grade with SPS models can achieve learning completeness; (2) the students from top group were able to solve the problem through Polya's stages except looking back stage; (3) the students of middle group were able to understand the problem well, but have not been able to carry out thoroughly stage of planning, implementing problem­solving, and looking back; (4) the students from less group have not been able to solve the problem through the Polya's stage which includes understanding the problem, devising a plan, carrying out the plan, and looking back.
KEEFEKTIFAN PEMBELAJARAN MODEL POGIL BERBANTUAN KARTU MASALAH TERHADAP KEMAMPUAN PEMECAHAN MASALAH DAN KARAKTER BANGSA SISWA KELAS VIII WIDYANINGRUM, PRIMA SEKAR; Pujiastuti, Emi; Wijayanti, Kristina
Unnes Journal of Mathematics Education Vol 5 No 3 (2016): Unnes Journal of Mathematics Education
Publisher : Department of Mathematics, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujme.v5i3.13444

Abstract

Tujuan penelitian ini adalah mengetahui apakah kemampuan pemecahan masalah siswa dengan penerapan pembelajaran model POGIL berbantuan kartu masalah dapat mencapai ketuntasan klasikal lebih dari atau sama dengan 75% dari jumlah siswa di kelas yang tuntas secara individual dan kemampuan pemecahan masalah siswa dengan penerapan pembelajaran model POGIL berbantuan kartu masalah lebih baik daripada kemampuan pemecahan masalah siswa dengan penerapan pembelajaran model ekspositori berbantuan kartu masalah, serta bagaimana karakter bangsa siswa dengan penerapan pembelajaran model berbantuan kartu masalah. Populasi penelitian ini adalah siswa kelas VIII SMP Negeri 2 Banyumas. Teknik sampling menggunakan cluster random sampling, diperoleh kelas VIII D sebagai kelas eksperimen dan kelas VIII E sebagai kelas kontrol. Metode pengumpulan data meliputi metode tes, observasi, dan dokumentasi. Analisis data yang digunakan adalah uji proporsi dan uji ketidaksamaan dua rata-rata. Hasil penelitian menunjukkan bahwa kemampuan pemecahan masalah siswa kelas eksperimen mencapai ketuntasan klasikal dan kemampuan pemecahan masalah siswa kelas eksperimen lebih baik daripada kemampuan pemecahan masalah siswa kelas kontrol. Selain itu, karakter bangsa siswa dengan penerapan pembelajaran model POGIL berbantuan kartu masalah mengalami perubahan menjadi lebih baik dari kriteria yang dimiliki sebelumnya. The purpose of this study was to determine whether the problem­solving ability of students with the application of learning models POGIL assisted problem cards could achieve classical completeness is more than or equal to 75% of the number of students in the class who completed individually and problem­solving ability of students with the application of learning models POGIL assisted problem cards was better than problem­solving ability of students with the application of learning models expository assisted problem cards, and how the national character of students with the application of learning models POGIL assisted problem cards. The population in this study is the eighth­grade students of Banyumas 2 Junior High School. Sampling was carried out by cluster random sampling technique, is obtained as an experimental class in eighth grade D and eighth grade class E as a control. Data collection methods include tests, observation, and documentation. Analysis of the data used is the proportion test, and test two average inequality.The results showed that the test result graders problem solving capabilities experiments achieve classical completeness and the average test students' problem­solving abilities experimental class better than the average results of the test solving abilities issue control class. Besides that, national character of students with the application of learning models POGIL assisted problem cards change be better of the criteria previously owned.
Problem solving ability of seventh grade students viewed from geometric thinking levels in search solve create share learning model Wijayanti, Kristina; Nikmah, Aizzatun; Pujiastuti, Emi
Unnes Journal of Mathematics Education Vol 7 No 1 (2018): Unnes Journal of Mathematics Education
Publisher : Department of Mathematics, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujme.v7i1.21251

Abstract

The purposes of this study was to know wether the student’s problem solving ability on SSCS and PBL learning models achive the mastery learning ; to compare the the student’s problem solving ability on SSCS and PBL learning models; to describe the problem solving ability student on SSCS learning model viewed from geometry thinking levels, and to know the quality of SSCS learning models. The method used was a mixed method. The population of this study was all students of SMP N 10 Semarang. The sample was chooseb by simple random sampling technique and class VII D as control class and VII G as experiment class.The quantitative data was analyzed by z-test to and the equivalence of two means. The qualitative data was analyzed through the validity test, data display, data reduction, and conclusion . Results indicated that either SSCS and PBL learning models have achieve the mastery learning of poblem solving ability test but there was no difference between students' problem solving abilitiy in the SSCS and PBL learning models. Students with PreRecognition and Visual can’t fully identify the properties of figure so it makes difficulty in solving problem. Students with Analysis level solve problem using the properties of certain figures.
Analysis of student’s mathematical problem solving ability based on responsibility learning with themed problem based learning model Dary, Novia Wulan; Wijayanti, Kristina; Winarti, Endang Retno
Unnes Journal of Mathematics Education Vol 10 No 2 (2021): Unnes Journal of Mathematics Education
Publisher : Department of Mathematics, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujme.v10i2.26516

Abstract

The purposes of this research are to examine the differences in problem-solving abilities of seventh-grade students in quadrilateral material with the Themed Problem Based Learning and Problem Based Learning model and to examine the effect of students' responsibility towards the students' problem-solving abilities in quadrilateral material with Themed Problem Based Learning. This research uses a quantitative method. The population is the seventh-grade students in one of Junior High School in Bekasi in amount of 198 students. The selected samples are students grade VII-9 as an experimental group and students grade VII-8 as a control group. The methods of collecting data in this study are the method of test and questionnaire. Data analysis uses t-test and regression analysis test. The results of this research show that the average problem-solving abilities of students on Themed Problem Based Learning is over than the model of Problem Based Learning and the responsibility of the students' learning give an impact to the problem-solving abilities of students on Themed Problem Based Learning model.
Algebraic thinking ability of VIIth grade students in mathematics using SAVI learning model Silviani, Siti Aminah; Mashuri, Mashuri; Wijayanti, Kristina
Unnes Journal of Mathematics Education Vol 9 No 2 (2020): Unnes Journal of Mathematics Education
Publisher : Department of Mathematics, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujme.v9i2.32380

Abstract

Algebraic Thinking has become a research trend to be developed in secondary and elementary schools. Algebraic Thinking, according to Kieran (2004), includes generational ability, transformational ability, and global meta ability. Permendikbud No. 58 of 2014 indirectly states mathematics is being taught to hone the algebraic thinking ability. The SAVI learning model (Somatic, Auditory, Visual, Intellectual) combines physical movement, five senses, intellectual activity. The purpose of this study was to analyze the classical mastery of algebraic thinking ability of VIIth grade students, one of junior high school in Ungaran in the SAVI learning model, to analyze the algebraic thinking ability of VIIth grade students in the SAVI learning model and PBL (Problem Based Learning), to describe the algebraic thinking ability of VIIth Grade students in the SAVI learning model. The results showed that (1) Algebraic thinking ability of VIIth Grade students in SAVI learning did not achieve classical mastery; (2) The algebraic thinking ability in SAVI learning was better than in PBL; (3) Algebraic thinking ability of VIIth in SAVI learning showed that generational ability reached 47.84%; transformational ability reached 51%, and global meta ability reached 33.8%.
NILAI EIGEN DAN VEKTOR EIGEN MATRIKS ATAS ALJABAR MAX-PLUS Tunisa, Kholipah; Wijayanti, Kristina; Veronica, Rahayu Budhiati
Unnes Journal of Mathematics Vol 6 No 2 (2017)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v6i2.20483

Abstract

Penelitian ini membahas mengenai menentukan nilai eigen, vektor eigen dari matriks tak tereduksi atas aljabar max-plus dan sifat -sifatnya. Metode yang digunakan adalah studi pustaka. Pada penelitian ini disimpulkan: 1) Nilai eigen dan vektor eigen dari matriks tak tereduksi atas aljabar max-plus dapat ditentukan dengan langkah-langkah berikut. (i) Menghitung A pangkat k, untuk k dari 1 sampai n, dengan n ordo matriks persegi (ii) Menghitung nilai eigen dengan yaitu maksimum seper k dikali trace dari A pangkat k pada langkah (i). (iii) Memilih sirkuit (c,c) yang merupakan sirkuit kritis di G(A). (iv) Menghitung matriks B dan B bintang. (v) Memilih vektor eigen dari A yang merupakan kolom ke-c dari matriks B bintang. 2) Sifat-sifat dari nilai eigen dan vektor eigen dari matriks tak tereduksi atas aljabar max-plus sebagai berikut. Vektor eigen dari matriks tak tereduksi tidak tunggal, Nilai eigen dan vektor eigen dari matriks tak tereduksi adalah berhingga. Nilai eigen dari matriks tak tereduksi tunggal. Nilai eigen dari matriks transpose sama dengan nilai eigen dari matriks asalnya Nilai eigen dari A pangkat k sama dengan nilai eigen dari A dipangkatkan k.
PENERAPAN ALJABAR MAX-PLUS PADA PENGATURAN SISTEM ANTRIAN TRAFFIC LIGHT Wibowo, Andi; Wijayanti, Kristina; Veronica, Rahayu Budhiati
Unnes Journal of Mathematics Vol 7 No 2 (2018)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v7i2.21338

Abstract

Penelitian ini bertujuan untuk mengatur sistem antrian traffic light menggunakan aljabar max-plus. Penelitian ini berdasarkan data kepadatan arus dan data durasi traffic light pada persimpangan. Kemudian, disusun graf yang menggambarkan kondisi persimpangan dan merepresentasikan arah dari pergerakan masing-masing jalur. Selanjutnya disusun aturan sinkronisasi yang sesuai dengan graf dan pemodelan dari aljabar max-plus. Langkah berikutnya adalah membahas penjadwalan yang periodik dari barisan keadaan sistem traffic light. Analisis dari model aljabar max-plus sistem antrian traffic light menggunakan algoritma power diperoleh periode rata-rata durasi lampu hijau tiap fase adalah detik. Hasil analisis memperoleh hasil perhitungan untuk persimpangan Jarakah Semarang dengan . Berdasarkan periode tersebut, durasi traffic light lebih proporsional dari data primer dan sesuai dengan kepadatan masing-masing simpang di persimpangan Jarakah Semarang. Sedangkan untuk persimpangan Lotte Mart Semarang diperoleh hasil dan berdasarkan periode tersebut menunjukkan durasi traffic light menjadi lebih optimal untuk mengurai kepadatan kendaraan yang melintasi persimpangan tersebut.
The Coherence of Group Scheme of the High Initial Ability Students Based on Cognitive Style Wijayanti, Kristina; Mulyono, Mulyono
Kreano, Jurnal Matematika Kreatif-Inovatif Vol 12, No 1 (2021): Kreano, Jurnal Matematika Kreatif-Inovatif
Publisher : Mathematics Dept, Math. and Science Faculty, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/kreano.v12i1.29528

Abstract

Teaching and learning deductive proof is one of the most important goals in mathematics education. According to the APOS theory, learning a concept is facilitated when students have constructed an adequate APOS mental structure for the concep. There are characteristics differences between field-dependent and field-independent students in responding to tasks to construct proofs. The purpose of this study was to analyze the coherence of the group scheme constructed by students with the high initial ability based on cognitive style to construct  proofs. This study was a qualitative. The research subjects were determined by the purposive sampling. Data collection using test and in-depth interviews. The credibility of data was carried out using triangulation. Data analysis used Miles and Huberman's model. The results showed that the FI and FN Subjects had thematized the group scheme and were coherent, while the FD Subject had thematized the group scheme but was not coherent.Pengajaran dan pembelajaran bukti deduktif dalam matematika merupakan salah satu tujuan terpenting dalam pendidikan matematika. Menurut teori APOS (Aksi, Proses, Objek, Skema), belajar suatu konsep terfasilitasi apabila siswa telah mengkonstruksi struktur mental APOS yang memadai untuk konsep tersebut. Ditinjau dari gaya kognitifnya, ada perbedaan karakteristik antara mahasiswa field-dependent dan field-independent dalam merespon tugas yang memerlukan kemampuan mengkonstruksi bukti. Tujuan penelitian ini adalah menganalisis koherensi Skema grup yang dikonstruksi mahasiswa dengan kemampuan awal mengkonstruksi bukti adalah tinggi dan gaya kognitif FI, FN, FD.  Penelitian ini dirancang sebagai penelitian kualitatif. Subjek penelitian ditentukan dengan teknik purposive sampling. Teknik pengumpulan data menggunakan teknik tes dan wawancara mendalam.  Derajat kepercayaan data dilakukan dengan teknik pemeriksaan triangulasi.  Analisis data selama di lapangan mengggunakan model Miles dan Huberman. Hasil penelitian menunjukkan Subjek FI dan FN sudah mentematisasi Skema grup dan sudah koheren, sedangkan Subjek FD sudah mentematisasi Skema grup namun belum koheren.
Pemanfaatan Komputer untuk Pengembangan Media Pembelajaran Matematika sebagai Upaya Peningkatan Kompetensi Guru Sekolah Dasar Putriaji Hendikawati; Rahayu Budhiati Veronika; Stevanus Budi Waluya; Kristina Wijayanti
CARADDE: Jurnal Pengabdian Kepada Masyarakat Vol. 1 No. 2 (2019): Februari
Publisher : Ilin Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (503.871 KB) | DOI: 10.31960/caradde.v1i2.106

Abstract

Matematika adalah salah satu ilmu dasar yang diajarkan sejak sekolah dasar yang menekankan pada pemahaman konsep. Penggunaan media pembelajaran yang tepat adalah salah satu cara untuk menanamkan pemahaman konsep pada siswa. Tujuan kegiatan pengabdian yang dilaksanakan adalah memberikan pengetahuan dan memotivasi para guru Sekolah Dasar YPII Cabang Semarang untuk mengembangkan keterampilan dan kreatifitas dalam membuat media pembelajaran dengan menggunakan teknologi komputer. Metode yang digunakan untuk merealisasikan tujuan adalah dengan pelaksanaan ceramah dan demonstrasi berisi pelatihan dan simulasi, pendampingan dan workshop untuk membantu guru membuat media pembelajaran menggunakan bantuan computer serta pemberian penugasan di akhir kegiatan. Pada akhir kegiatan setiap guru menghasilkan sebuah produk media pembelajaran. Hasil yang diperoleh dari kegiatan ini adalah para guru merasakan manfaat kegiatan, memperoleh pengetahun baru, dapat membuat media pembelajaran sederhana dengan menggunakan bantuan komputer dan merasa tertantang untuk terus mengembangkan kemampuannya untuk memanfaatkan media komputer dalam membuat media pembelajaran
Ethnomathematical Exploration in the Geulis Group Tasikmalaya West Java Astrid Sulistya Azahra; Detalia Noriza Munahefi; Kristina Wijayanti; Agung Prabowo
International Journal of Ethno-Sciences and Education Research Vol 2, No 1 (2022)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1444.541 KB) | DOI: 10.46336/ijeer.v2i1.237

Abstract

In this study, mathematical concepts are used to explore the existence of mathematics in culture, especially in the Tasikmalaya group of geulis. By observing the current conditions, the activity of making kelom geulis is seen as a "mathematical-free" activity. It is still rare and there is still a lack of public knowledge about ethnomathematics which colors the activities of making kelom geulis as a motivation to investigate the mathematical knowledge contained in it. In addition, with the decreasing number of kelom geulis craftsmen as a result of the use of kelom geulis left by the original community producing these products. This study aims to determine and describe the ethnomathematics of the geulis group. The method used is qualitative with ethnographic methods. The subjects in this study were selected using a purposive sampling method with the research subject being a kelom geulis craftsman in the Tamansari (Gobras) area, Mulyasari, Tasikmalaya. Data collection techniques used are interviews, observation and documentation. The data analysis technique used in the research is data reduction, data presentation and drawing conclusions. Based on the results of data analysis, it can be concluded that there are mathematical concepts in the geulis group, especially in the discussion of flat shapes such as rectangles, circles and triangles. This research also produces a linear equation that relates the length of the foot to the size of the geulis group.