p-Index From 2020 - 2025
9.326
P-Index
This Author published in this journals
All Journal Jurnal Penelitian Saintek Teika Jurnal Buana Informatika JSI: Jurnal Sistem Informasi (E-Journal) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Edukasi dan Penelitian Informatika (JEPIN) Jurnas Nasional Teknologi dan Sistem Informasi Annual Research Seminar ANDHARUPA CESS (Journal of Computer Engineering, System and Science) Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Information System for Educators and Professionals : Journal of Information System MBR (Management and Business Review) JOURNAL OF APPLIED INFORMATICS AND COMPUTING METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi J I M P - Jurnal Informatika Merdeka Pasuruan Jurnal Sisfokom (Sistem Informasi dan Komputer) Jurnal ULTIMA InfoSys Jurnal Teknologi Sistem Informasi dan Aplikasi Jurnal Ilmiah Media Sisfo JURTEKSI Jurnal Riset Informatika JOISIE (Journal Of Information Systems And Informatics Engineering) CCIT (Creative Communication and Innovative Technology) Journal JUSIM (Jurnal Sistem Informasi Musirawas) INFOMATEK: Jurnal Informatika, Manajemen dan Teknologi Journal of Information Systems and Informatics Jurnal Teknologi Dan Sistem Informasi Bisnis Zonasi: Jurnal Sistem Informasi Jurnal Pengabdian Masyarakat Bumi Raflesia JATI (Jurnal Mahasiswa Teknik Informatika) Teknomatika (Jurnal Teknologi dan Informatika) REKA ELKOMIKA: Jurnal Pengabdian kepada Masyarakat JUSTIN (Jurnal Sistem dan Teknologi Informasi) Konstelasi: Konvergensi Teknologi dan Sistem Informasi Jurnal Algoritma SmartComp The Indonesian Journal of Computer Science JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

Ekstraksi Pengetahuan dari Ulasan Aplikasi CapCut Menggunakan Metode Aspect-Based Sentiment Analysis dan Klasifikasi Ariyani, Ishlah Putri; Tania, Ken Ditha; Wedhasmara, Ari; Meiriza, Allsela
Jurnal Buana Informatika Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia mengalami perkembangan teknologi yang pesat, khususnya dalam penggunaan internet dan platform editing seperti CapCut. Platform ini memungkinkan pengeditan video di berbagai perangkat, namun kepuasan pengguna tidak selalu terjamin karena perbedaan pengalaman individu. Penelitian ini bertujuan untuk mengidentifikasi sentimen pengguna terhadap aplikasi CapCut berdasarkan aspek.Dengan menggunakan pendekatan Aspect-Based Sentiment Analysis (ABSA) yang didukung oleh algoritma Machine Learning untuk tugas klasifikasi sentimen berdasarkan aspek. Algoritma yang digunakan dalam proses klasifikasi adalah Support Vector Machine. Data yang digunakan adalah ulasan aplikasi CapCut dari Google Play Store sebanyak 22.668 data. Hasil penelitian menunjukkan bahwa algoritma Support Vector Machine (SVM) memiliki performa yang baik untuk masing-masing aspek dengan nilai akurasi untuk aspek fitur 0,88 dan aspek user experience 0,87. Hasil ekstraksi pengetahuan yang diperoleh berupa XML yang memuat informasi sentimen pengguna terhadap dua aspek utama, yaitu fitur dan user experience. 
Segmentasi Spasial Tingkat Kemiskinan Provinsi Sumatera Selatan Menggunakan Pendekatan Klasterisasi K-Means Jonathan Pakpahan; Septhia Charenda Putri; Ananda Khoirunnisa; Rafika Octaria Ningsih; Putri Mutiara Arinie; Arvhi Randita Setia; Ken Ditha Tania; Allsela Meiriza
Jurnal Ilmiah Komputasi Vol. 24 No. 3 (2025): Jurnal Ilmiah Komputasi : Vol. 24 No 3, September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32409/jikstik.24.3.3820

Abstract

Kemiskinan adalah tantangan utama dalam pembangunan ekonomi yang membutuhkan analisis berbasis data. Kajian ini menerapkan metode klasterisasi K-Means untuk segmentasi spasial tingkat kemiskinan berdasarkan indikator sosial-ekonomi, seperti persentase penduduk miskin, rata-rata lama sekolah, pengeluaran per kapita, serta indeks kedalaman dan keparahan kemiskinan. Data dari BPS tahun 2024 diolah menggunakan pendekatan Knowledge Discovery in Database (KDD) melalui tahapan seleksi data, prapemrosesan, transformasi, penambangan data, dan evaluasi menggunakan RapidMiner. Hasil klasterisasi membentuk empat kelompok dengan disparitas kesejahteraan antarwilayah, di mana beberapa daerah menunjukkan tingkat kemiskinan yang lebih tinggi. Melalui pemetaan berbasis data ini, penelitian diharapkan menjadi dasar bagi pengambil kebijakan dalam merancang strategi penanggulangan kemiskinan yang efektif dan tepat sasaran guna mengurangi ketimpangan sosial serta meningkatkan kesejahteraan masyarakat di Provinsi Sumatera Selatan. Kata kunci: Kemiskinan, K-Means, Klasterisasi, Data Mining, Sumatera Selatan.
Performance Comparison of Sentiment Classification Algorithms on SIGNAL Reviews Using SMOTE Anadia, Qothrunnada Wafi; Meiriza, Allsela
Journal of Information System and Informatics Vol 7 No 3 (2025): September
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v7i3.1196

Abstract

Public service apps like SIGNAL are widely used to provide public access to information and vehicle tax payments. However, diverse user reviews highlight the need to evaluate public perception through sentiment analysis. Selecting an appropriate classification algorithm is crucial to ensure accurate results, particularly when dealing with imbalanced review data. Therefore, This study examines the comparative performance of four algorithms Naïve Bayes, Random Forest, Decision Tree, and SVM in analyzing the sentiment of 36,000 user feedback obtained from Google Play Store. The dataset underwent preprocessing, feature extraction using TF-IDF, and class balancing using SMOTE. Model evaluation was conducted using accuracy, precision, recall, and F1-score. The findings indicated that Random Forest performed the best overall performance (accuracy 91.04%, F1-score 94.80%), followed by Naïve Bayes (accuracy 89.89%, F1-score 93.38%), SVM (accuracy 89.22%, F1-score 93.02%), and Decision Tree (accuracy 88.40%, F1-score 92.31%). These findings indicate that Random Forest is highly effective for balanced datasets, while SVM and Naïve Bayes offer competitive precision for applications prioritizing accuracy in positive class detection. The output of this study can be applied practically by developers and related institutions in optimizing public service applications and by applying Random Forest algorithm to gain actionable insights for optimizing features and aligning services more closely with user needs.
Comparison of Support Vector Machine and Random Forest Algorithms in Sentiment Analysis of the JMO Mobile Application Via Mariska, Inneke; Meiriza, Allsela; Lestarini, Dinda
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10764

Abstract

JMO Mobile is a digital service application that enables the public to access employment-related information and benefits. User reviews serve as a valuable resource for evaluating service quality, yet systematic sentiment analysis on this application remains limited. This study aims to classify the sentiment of user reviews and compare the performance of Support Vector Machine (SVM) and Random Forest (RF) algorithms. A total of 41,673 reviews were collected through web scraping, then preprocessed through text cleaning, tokenization, stopword removal, stemming, and feature extraction using TF-IDF. The reviews were categorized into positive, negative, and neutral sentiments, and divided into training and testing datasets with an 80:20 ratio. The choice of SVM and RF was based on their proven effectiveness in text classification tasks, with SVM excelling in handling high-dimensional data and RF recognized for its stability in producing reliable results. Model evaluation was conducted using accuracy as the primary metric. The findings indicate that Random Forest achieved an accuracy of 86.15 percent, slightly outperforming SVM at 86.06 percent. While SVM showed superior performance in identifying positive sentiment, Random Forest demonstrated greater consistency across classifications. Overall, Random Forest is considered more suitable for sentiment analysis of public service application reviews. This study contributes an automated approach to understanding user perceptions and offers a reference for selecting classification algorithms in similar cases.
Aspect-Based Sentiment Analysis of Hospital Service Reviews Using Fine-Tuned IndoBERT Maretta, Aulia; Meiriza, Allsela
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10765

Abstract

Aspect-Based Sentiment Analysis (ABSA) has become a crucial approach for extracting detailed opinions from user-generated content, especially in the healthcare domain. This study analyzes public sentiment toward hospital services in Indonesia using IndoBERT, fine-tuned on 2.448 reviews collected from Google Reviews and Instagram. Sentiment labels were automatically assigned with a pre-trained Indonesian RoBERTa classifier, while aspect extraction was performed through a lexicon-based approach covering five service dimensions: Facilities, Staff Competence, Empathy and Communication, Reliability and Responsiveness, and Cost and Affordability. To address class imbalance, the IndoBERT model was optimized using class weight adjustments. The results demonstrate strong performance, achieving an overall accuracy of 96%. In terms of sentiment classification, the model obtained F1-scores of 89% for negative, 83% for neutral, and 99% for positive sentiment, with a macro-average F1 of 90%. By aspect, Facilities (82.24%) and Empathy & Communication (91.71%) received the highest positive sentiment, while Cost & Affordability recorded the highest proportion of negative sentiment (25%). These findings underscore the effectiveness of IndoBERT-based ABSA in capturing nuanced public perceptions and highlight its potential as a decision-support tool for hospitals to enhance service quality and patient satisfaction in Indonesia.
Comparative study of K-Nearest Neighbor and Support Vector Machine methods in analyzing the consistency of college major based on high school majors Fiorenza Rizkyllah, Anabel; Meiriza, Allsela; Hardiyanti, Dinna Yunika
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 4 (2025): NOVEMBER (In Press)
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Choosing a college major is a crucial decision that can influence a student's academic and career path. Ensuring that students' choices are consistent with their high school majors can help improve academic success and career readiness. This paper delivers a comparative analysis of the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) methods in evaluating the consistency of college major selection based on high school majors. A dataset of 636 students was collected and processed for analysis. The findings indicates that the KNN algorithm achieved an average precision, recall, F1-Score, and accuracy of 78%. Meanwhile, the SVM algorithm achieved a higher average score of 85%. This indicates better performance in analyzing the consistency between students' high school majors and their chosen college majors. These findings show that SVM is more effective in supporting guidance in college major selection, highlighting its suitability as a reliable method for decision making.
Analisis Faktor Penerimaan TikTok Shop berdasarkan Model UTAUT2 dan SCC Sawitri, Rizky; Meiriza, Allsela
Jurnal Nasional Teknologi dan Sistem Informasi Vol 9 No 1 (2023): April 2023
Publisher : Departemen Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v9i1.2023.33-44

Abstract

TikTok Shop merupakan salah satu social commerce untuk melakukan transaksi jual beli secara online. Fitur tersebut berhasil menjadikan aplikasi TikTok menempati peringkat pertama sebagai media sosial yang paling sering digunakan untuk berbelanja online. Meskipun demikian berdasarkan identifikasi masalah yang dilakukan oleh peneliti melalui penilaian pada Google Play Store, peneliti menemukan beberapa pengguna yang mengeluhkan fitur TikTok Shop. Keluhan tersebut diantaranya mengenai faktor kepercayaan dalam berbelanja melalui TikTok Shop yang dianggap masih lemah, keluhan mengenai proses transaksi, serta keluhan mengenai customer service yang kurang responsif. Oleh sebab itu perlu dilakukannya analisis mengenai faktor-faktor penerimaan pengguna. Tujuan dari penelitian ini adalah untuk mengetahui faktor-faktor penerimaan TikTok Shop pada masyarakat Sumatera Selatan berdasarkan model UTAUT 2 dan Social Commerce Constructs. Selain itu, penelitian ini juga menguji peran moderasi usia pelanggan terhadap niat pembelian dan perilaku penggunaan. Penelitian ini melibatkan 171 responden dari berbagai Kabupaten/Kota di Sumatera Selatan yang pernah melakukan pembelian melalui TikTok Shop. Hasil penelitian ini menunjukan bahwa kebiasaan (habit), pengaruh sosial (social influence), konstruk-konstruk social commerce (SCC), dan kepercayaan pengguna (user trust) merupakan komponen yang mempengaruhi minat masyarakat Sumatera Selatan untuk melakukan pembelian (PI) pada TikTok Shop. Selain itu, konstruk-konstruk social commerce (SCC) juga terbukti berpengaruh terhadap kepercayaan pengguna (user trust). Penelitian ini juga menunjukan bahwa terdapat pengaruh yang bervariasi antara variabel-variabel yang dimoderasi oleh usia pengguna.
UI/UX Design of Web-based Software License Management System using User-Centered Design and System Usability Scale Faizah, Ovie Nur; Oktadini, Nabila Rizky; Putra, Bayu Wijaya; Sevtiyuni, Putri Eka; Putra, Pacu; Meiriza, Allsela
Jurnal Nasional Teknologi dan Sistem Informasi Vol 9 No 3 (2023): Desember 2023
Publisher : Departemen Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v9i3.2023.255-263

Abstract

PT Bukit Asam Tbk (PTBA), a state-owned coal mining company, must comply with government regulations regarding software licenses. They face difficulties monitoring and managing licenses that could lead to violations. To solve this problem, we try to design a website-based UI/UX for Software License Management System. This research aims to provide an intuitive interface and a comfortable user experience employing the User-Centered Design (UCD) approach, which consists of three main stages: Needs Analysis, Design and Prototyping, and Evaluation. Evaluation is carried out through usability testing using the System Usability Scale (SUS). Test results indicate that UCD is effective in designing a system responsive to user needs with a high level of usability. With an effectiveness of 99%, efficiency of 96.67%, and an SUS score of 88.25, this system design receives an 'Acceptable' rating, a (B) grade, and falls into the 'Excellent' category. The designed system is deemed suitable for further development towards the implementation phase.
Co-Authors Adhiyasa, Chandra Julian Adriansyah, Rizki Ahmad Rifai Akbar Alzaini Akbar Alzaini Al Fachrozi, Muhammad Al-Farisy, M Hadi Alfarizi, M. Ali Ibrahim Ali Ibrahim Alvico, Alvico Alvines, Mahendi Alzaini, Akbar Amanda, Bella Rizkia Anadia, Qothrunnada Wafi Ananda Khoirunnisa Andini Bahri, Cheisya Andriani, Sari Ani Nidia Listianti, Ani Nidia Anindya Putri, Salsa Annisa Tri Ning Tyas Apriansyah Putra Archi Daffa Danendra, Muhammad Ari Wedhasmara Ariyani, Ishlah Putri Ariyanti, Putri Arvhi Randita Setia Athallah Ubaid, Deni Ayuningtiyas, Pratiwi Bayu Wijaya Putra Beriadi Agung Nur Rezqe Chandra Julian Adhiyasa Cynthia Sherina Fadeli Danendra, Devano Dedy Kurniawan Deni Lidianti Desty Rodiah Devano Danendra Dinda Lestarini Dinna Yunika Hardiyanti Dwi Rosa Indah Endang Lestari Ruskan Endang Lestari Ruskan Epriyanti, Nadia Ermatita - Faizah, Ovie Nur Fathoni - Fathoni - Fatimah Salsabila Fatimah, Aisyah Fiorenza Rizkyllah, Anabel Firda, Hiliah Gultom, Gina Destia Gusti Barata Hardini Novianti Hardini Novianti Hardini Novianty Ichsan Farel Rachmad, Muhammad Idpal, Idpal Inayah, Anna Fadilla Irmawati Irmawati Izzan Fieldi, Muhammad Jaidan Jauhari Jambak, Muhammad Ihsan Jefven Fernando Jonathan Pakpahan Karima, Dzakiah Aulia Karimsyah Lubis, Muhammad Karisa Anjani Fakhri Ken Dhita Tania, Ken Dhita Ken Ditha Tania Khoiriyah Harahap, Dayana Larasati, Salsabila Lifiano Jamot Munthe, Gabriel Luh Sri Mulia Eni M Rifki Ali M. Rudi Sanjaya Maharani, Wardah Shifa Maretta, Aulia Maretta, Aulia Pinkan Mariska, Inneke Via Meiriza, Viola Meitiana Audya Muhamad Edric Rasyid Muhammad Aidil Fitri Syah Muhammad Ali Buchari Muhammad Ihsan Muhammad Ihsan Muhammad Imam Riadillah Munaspin, Zahra Diva Putri Nabila Oktadini Nabila Riska Ayu Nachwa, Syakillah Nadia Ayu Safitri Nashiroh Ramadhani, Muthia Novitia Chinoi Nurul Izmy Nys Marliza Tiara M Oktadini, Nabila Oktadini, Nabila Rizky Onkky Alexander Pacu Putra Padlefi, Muhamad Riza Paulus Paskah Lino Susilo Perdani, Tharisa Antya Putri Ariyanti Putri Eka Sevtiyuni Putri Eka Sevtiyuni Putri Eka Sevtyuni Putri Mutiara Arinie Putri, Adetya Rielisa Putri, Nyayu Dwi Tarisa Rafika Octaria Ningsih Rafli Maulana, Muhammad Rahmat Izwan Heroza Ramadhan Putra Pratama, Muhammad Ramadhan, Kumara Aditya Rangga Aderiyana, Fakih Rani Mardiah Ravi Wijayanto, Muhammad Rezeki, Yunika Tri Rezqe, Beriadi Agung Nur Ricy Firnando Rido Zulfahmi Rika Septiana Riska Yunita Rizka Rahmadhani Rizki Kurniati Rizky Herdiansyah, Muhammad Rizky Sawitri Rizkyllah, Anabel Fiorenza Rositiani, Ely Royan Dwi Saputra RR. Ella Evrita Hestiandari Sanjaya, M. Rudi Saputri, Sonia Dwi Sari Andriani Sasmita, Ruth Mei Sawitri, Rizky Septhia Charenda Putri Sevtiyuni, Putri Eka Silvia, Nyimas Simanullang, Eka Darmayanti Susanti, Helen Susilo, Paulus Paskah Lino Syahbani, Muhammad Husni Syarief Albani, Muhammad Tharisa Antya Perdani Theresia Pardede, Eva Titiana, Nuke Merisca Tri Zafira, Zahra Tsabitah, Laila Via Mariska, Inneke Wahyudi, Muhammad Iqbal Wulan Dari, Atikah Yadi Utama Yadi Utama Yasir Alghifari, Muhammad Yasyfi Imran, Athallah Yunita Yunita