Claim Missing Document
Check
Articles

LDA Topic Analysis for Product Reviews in Social Media Platform Alzami, Farrikh; Megantara, Rama Aria; Prabowo, Dwi Puji; Sulistiyawati, Puri; Pramunendar, Ricardus Anggi; Dewi, Ika Novita; Ritzkal, Ritzkal
Moneter: Jurnal Keuangan dan Perbankan Vol. 11 No. 2 (2023): OKTOBER
Publisher : Universitas Ibn Khladun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/moneter.v11i2.402

Abstract

Social media in recent years is used as platform for product reviews and customer feedback. Thus, to understand the topic which have been discussed, we utilized Latent Dirichlet Allocation for topic modeling. The topic modeling is important due to it can gain insights into the specific features that customers like or dislike about a particular product. Thus, by not using stop words due it have possibilities remove the time domain, the information can be valuable for businesses as it helps them understand customer preferences and inform product development and marketing strategies with the coherence score 0.621520, the topic modeling obtained 3 optimal topics, where the topic 0 discussed about price and time it will be available to purchase. In topic 1 it discussed about the product is hard to obtain due to it not available in market. In topic 2, it discussed about ownership (what they like after usage).
RFM Analysis for Customer Lifetime Value with PARETO/NBD Model in Online Retail Dataset Megantara, Rama Aria; Alzami, Farrikh; Akrom, Ahmad; Pramunendar, Ricardus Anggi; Prabowo, Dwi Puji; Wibowo, Sasono; Ritzkal, Ritzkal
Moneter: Jurnal Keuangan dan Perbankan Vol. 11 No. 2 (2023): OKTOBER
Publisher : Universitas Ibn Khladun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/moneter.v11i2.409

Abstract

In recent years, there has been a growing interest in analyzing Customer Lifetime Value (CLV) due to its ability to provide valuable insights into customer profitability and worth. CLV analysis predicts the net profit attributed to the entire future relationship with a customer. This analysis involves calculating the present value of a customer's expected future spending with the company, facilitating an understanding of the economic value of long-term customer relationships. CLV analysis empowers businesses to identify their most profitable customers and develop strategies for retaining them, ultimately maximizing long-term profitability. CLV analysis relies on various models and techniques, including the RFM analysis categorizes customers based on recency, frequency, and monetary value, helping to segment customers and predict future behavior. Then, The Pareto/NBD model combines probability distributions to estimate CLV and is commonly used for customer base analysis. This research article explores the application of RFM analysis for estimating customer lifetime value using the Pareto/NBD model in an online retail dataset. This metric is crucial for businesses as it assists in identifying valuable customers and formulating retention strategies to maximize long-term profitability.
Enhancing Entity Extraction in E-Government Complaint Data using LDA-Assisted NER Umam, Ahmad Khotibul; Alzami, Farrikh; Sani, Ramadhan Rakhmat; Rohmani, Asih; Prabowo, Dwi Puji; Pergiwati, Dewi; Megantara, Rama Aria; Iswahyudi, Iswahyudi
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15292

Abstract

With the rapid development of information technology, governments are increasingly challenged to provide digital channels that enhance public participation in governance. LaporGub, an official platform managed by the Central Java Provincial Government, accommodates citizens' aspirations and complaints, but faces challenges in processing large amounts of unstructured text. Manual analysis is time-consuming and error-prone, resulting in delayed responses and decreased service quality. Conventional Named Entity Recognition (NER) models struggle to handle informal Indonesian-language text, while transformer-based approaches require substantial computing resources that are not widely available in local government environments. Therefore, this study aims to develop a lightweight NER approach by integrating Latent Dirichlet Allocation (LDA) as a semantic pre-annotation tool to improve the accuracy of entity extraction in Indonesian e-government complaint data. To achieve this goal, a dataset of 53,858 complaint reports from the LaporGub platform (2022–2025) was processed using LDA topic modeling (k=10) to provide semantic context during annotation. Next, the enriched dataset was used to train a spaCy-based NER model targeting three entity types: LOCATION, ORGANIZATION, and PERSON, with a training-validation-test split ratio of 70:15:15 using stratified sampling. The evaluation showed that the proposed NER+LDA model achieved a precision of 90.03%, a recall of 81.86%, and an F1-score of 85.75%, representing improvements of +5.78, +2.55, and +4.04, respectively, compared to the baseline NER model (F1-score: 81.71%). Furthermore, the most significant improvements occurred in the detection of ORGANIZATION and PERSON entities. These findings confirm that the integration of LDA as a pre-annotation strategy effectively improves NER performance on informal complaint texts in Indonesia, thus offering a practical and resource-efficient alternative to transformer-based methods for e-government applications.
Pelatihan Desain Poster Promosi untuk UMKM Binaan Dinsospermasdes Kabupaten Jepara Ghozi, Wildanil; Prabowo, Dwi Puji; Rafrastara, Fauzi Adi; Pramunendar, Ricardus Anggi; Sani, Ramadhan Rakhmat
Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming Vol 8, No 3 (2025): Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstormin
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/japhb.v8i3.8379

Abstract

Internet sebagai salah satu dorongan utama dalam perkembangan teknologi memungkinkan setiap manusia untuk menjangakau informasi tanpa batasan ruang dan waktu. Saat ini di Indonesia, lebih dari 196,7 juta penduduk memanfaatkan internet dalam aktivitasnya sehari-hari. Pada provinsi Jawa Tengah terdapat 25,6 juta pengguna internet aktif. Tingginya pengguna internet menjadi peluang untuk memperluas target pemasaran produk UMKM. Pemerintah Kabupaten Jepara, melalui Dinas Sosial, Pemberdayaan Masyarakat dan Desa (Dinsospermasdes) Kabupaten Jepara memiliki tanggung jawab dalam program rehabilitasi Penyandang Masalah Kesejahteraan Sosial (PMKS) dimana salah satu programnya adalah pembinaan UMKM. Saat ini, UMKM binaan Dinsospermasdes belum mampu membuat desain poster promosi yang baik dan menarik pembeli. Penulis memberikan pelatihan desain poster dengan menggunakan aplikasi canva kepada para pelaku UMKM binaan. Pelatihan tersebut telah berhasil meningkatkan pemahaman konsep desain, kemampuan pengambilan foto produk, dan kemampuan membuat desain poster promosi para pelaku UMKM. Poster-poster baru yang dihasilkan pada kegiatan pelatihan menjadi indikator keberhasilan para peserta mengikuti pelatihan. Dengan demikian, diharapkan kemampuan yang telah dimiliki dapat membantu meningkatkan penjualan produk UMKM binaan.
Pemanfaatan Metode CNN Menggunakan Arsitektur Alexnet untuk Peningkatan Kinerja Klasifikasi Penyakit Daun Tomat Prabowo, Dwi Puji; Bastian, Henry; Muqoddas, Ali; Pramunendar, Ricardus Anggi; Agustina, Feri
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 15, No 2 (2024): JURNAL SIMETRIS VOLUME 15 NO 2 TAHUN 2024
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v15i2.12529

Abstract

Tomat adalah salah satu komoditas hortikultura dengan nilai ekonomi yang tinggi, tantang yang dihadapi oleh petani salah satunya dalah kerentanan penyakit tomat terhadap penyakit. Identifikasi secara visual pada daun sulit diuraikan dengan sekali pandang, sehingga menyebabkan asumsi yang tidak akurat tentang penyakit tersebut. Akibatnya, mekanisme pencegahan yang dilakukan petani menjadi tidak efektif dan berdampak merugikan. Penelitian ini mengusulkan identifikasi penyakit tomat secara automatis menggunakan metode Convolution Neural Network. Dalam makalah ini kami melakukan evaluasi pada metode CNN dengan arsitektur Alexnet dengan konfigurasi layer untuk mencari hasil kinerja terbaik dari penggunaan parameter tersebut pada architektur Alexnet. Pada penelitian ini juga melakukan analisis yang diperoleh dari hubungan antara parameter yang digunakan terhadap kinerja akurasi, dan analisis terhadap dampak penggunaan parameter dengan jumlah dataset daun tomat dari dataset PlantVillage.
Adaptasi Digital Marketing berbasis Website untuk Produk UMKM Fatikha Sweet Honey Haryadi, Toto; Ulumuddin, Dimas Irawan Ihya'; Prabowo, Dwi Puji; Ihwan, Afif Mas’udi
Jurnal Informatika UPGRIS Vol 8, No 1: Juni 2022
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v8i1.11524

Abstract

Honey is one of health supplements which bought by people to prevent Covid-19 symptoms. This is an opportunity for Fatikha Sweet Honey to introduce its products. However, the currently applied digital marketing strategy only focus on Facebook and Instagram media, which rarely get a response from consumers. It needs digital marketing media which can present a variety of product information such as: photos, benefits, variants, how to order, and so on. Based on these considerations, the website becomes a right digital marketing medium. This study focuses on adapting the website as a medium to introduce and sell honey products. The study used qualitative methods, supported by data searches through indirect interviews, observation, and literature studies. Website adaptation using MDLC. The result is a website as main media for promoting and selling Fatikha Sweet Honey products. The output of this research is expected to be useful for increasing sales of it and can be further developed into a marketplace application.
PROTOTIPE APLIKASI PENGENALAN WAYANG KULIT MENGGUNAKAN CNN BERBASIS VGG16 prabowo, dwi puji; Ullumudin, D.I.I; Pramunendar, R.A.
Jurnal Informatika UPGRIS Vol 7, No 2: Desember 2021
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v7i2.10485

Abstract

Indonesia has various types of culture and traditional arts. In this era of globalization, local culture and arts have begun to be eroded by the times. One of the diverse Indonesian culture is wayang kulit. Where the shadow puppets in Indonesia vary and vary from region to region. In this case, the puppet characters have different forms and curves, so recognizing the shape of a puppet is very difficult. In the development of technology, computer vision technology began to be widely used to perform object recognition with deep learning learning. So that an object being studied can be detected properly. In this study, a prototype was made with the detection of puppet types using Deep Learning learning using Convolutional Neural Networks to detect shadow puppet objects based on the VGG16 architecture. The results obtained by the CNN and VGG16 methods reached 86%. With the results obtained, a prototype model is made which will later be able to help the community in the introduction of shadow puppets.Keyword: CNN, shadow puppets ,VGG16
PREDIKSI SENTIMEN MASYARAKAT TERHADAP PENGGUNAAN VAKSIN COVID 19 MENGGUNAKAN RNN prabowo, dwi puji; pramunendar, Ricardus anggi; Megantara, Rama Aria
Jurnal Informatika UPGRIS Vol 8, No 1: Juni 2022
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v8i1.11599

Abstract

Memahami sentimen dari opini publik terkait vaksin COVID-19 merupakan tantangan untuk meningkatkan penerimaan vaksin di masyarakat. Analisis sentimen telah memberikan banyak manfaat termasuk di bidang kesehatan. Analisis Sentimen dapat membantu memberikan gambaran yang dirasakan dan dipikirkan oleh para penerima vaksin. RNN merupakan salah satu metode deep learning yang sering diterapkan untuk penelitian analisis sentimen. RNN dengan arsitekur LSTM telah terbukti unggul dibandingkan metode deep learning lainnya dalam menyelesaikan tugas analisis sentimen. Penelitian ini mengusulkan model RNN-LSTM yang menerapkan arsitektur Bidirectional Layer (Bi-LSTM) agar penyerapan informasi kontekstual data lebih optimal karena data input diproses secara forward dan backward. Serta menambahkan mekanisme variational dropout pada layer LSTM untuk mendapatkan model yang optimal dan terhindar dari overfitting. Namun, keberhasilan dan keoptimalan model deep learning sangat bergantung pada ukuran dataset, jenis tugas dan penentuan parameternya. Dalam penelitian ini eksperimen terhadap nilai parameter arsitektur model dilakukan untuk mendapatkan model yang optimal dalam melakukan analisis sentimen opini publik terkait Vaksin COVID-19. Sehingga parameter terbaik didapatkan untuk model Bi-LSTM ini yaitu seperti berikut: maxlen =50, embedding size= 300, recurrent unit = 50, variational dropout = 0.25, optimizer Nadam, dan epoch = 100. Hasil evaluasi menunjukkan model BI-LSTM ini mampu melakukan analisis sentimen terhadap opini publik terkait vaksin COVID-19 ke dalam tiga kelas sentimen (positif, netral dan negatif) dengan baik dan mendapatkan akurasi sebesar 89.15% dengan rata-rata presisi 88%, recall 89% dan F1-score 88.43%
PENGENALAN CITRA BATIK MENGGUNAKAN FITUR FRAKTAL BERDASARKAN METODE SUPPORT VECTOR MACHINE (SVM) prabowo, dwi puji; Sulistiyawati, puri; pramunendar, Ricardus anggi
Jurnal Informatika UPGRIS Vol 8, No 2: Desember 2022
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v8i2.13257

Abstract

Indonesia sebagai negara kepulauan terbesar di asia memiliki berbagai keanekaragaman budaya, salah satunya adalah batik yang merupakan warisan budaya nusantara yang telah diakui oleh UNESCO pada tanggal 2 Oktober 2009 sebagai warisan budaya dunia. Keanekaragaman jenis batik dipengaruhi oleh budaya maupun sejarah penciptaan batik di setiap daerah masing-masing. Semakin berkembangnya motif kain batik di indonesia memicu sebagian pihak untuk mendokumentasikan dan mengklaim motif batik sebagai hasil kebudayaan dari daerah asalnya. Jika tidak didokumentasikan dengan baik batik sebagai warisan budaya Indonesia dapat hilang dan diakui oleh negara lain. Oleh karena itu diperlukan sebuah teknik yang dapat mengenali dan mengelompokkan batik berdasarkan motifnya. Pada penelitian ini mengusulkan metode Fraktal dan SVM untuk melakukaan pengenalan citra batik. Fraktal diusulkan sebagai proses fitur ekstraksi dengan menggunakan pendekatan box-counting. Metode fraktal merupakan cara alami untuk mempresentasikan bentuk-bentuk objek alam sehingga objek tersebut memiliki kemiripan yang sama dengan dirinya sendiri pada skala yang berbeda. SVM merupakan salah satu teknik klasifikasi yang memiliki kinerja lebih baik dibandingkan dengan teknik klasifikasi lainnya. Data yang digunakan adalah data citra batik pedalaman dan pesisir sebanyak 400 gambar. Dari hasil pengujian klasifikasi citra batik dengan menggunakan Fraktal dan SVM mencapai hasil akurasi yang lebih baik daripada GLCM dan SVM. Dengan hasil akurasi tertinggi 91.6%.
Upaya Meningkatkan Pelayanan Informasi Kepada Masyarakat Menggunakan Media Interaktif Di Kantor Setda Kabupaten Grobogan Prabowo, Dwi Puji
ANDHARUPA: Jurnal Desain Komunikasi Visual & Multimedia Vol. 1 No. 01 (2015): February 2015
Publisher : Dian Nuswantoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/andharupa.v1i01.958

Abstract

Kebutuhan masyarakat akan pelayanan informasi sangatlah penting, salah satunya adalah  pelayanan publik yang memuasakan dapat menjadi indikasi bahwa pemerintahan di suatu daerah berjalan dengan baik. Perkembangan teknologi di era globalisasi sekarang ini sangatlah berkembang pesat. Kantor Setda Kabupaten Grobogan berupaya meningkatkan pelayanan publik dengan memanfaatkan teknologi yaitu menggunakan media interaktif  sebagai sarana pemberian informasi kepada masyarakat. Penelitian ini juga memberikan konsep kreatif  yang digunakan. Hasil yang dicapai  pada  penelitian  ini  menghasilkan media interaktif yang mampu menunjang peningkatan pelayanan kepada masyarakat. Dengan adanya media interaktif Sistem Informasi Publik diharapkan masyarakat dapat memperoleh informasi dengan mudah dan valid serta tingkat kepuasan masyarakat terhadap pelayanan semakin meningkat guna menunjang kemajuan pembangunan daerah. Kata Kunci: Pelayanan publik , multimedia, media interaktif