Claim Missing Document
Check
Articles

Tinjauan Pustaka Sistematis: Data Mining Dalam Bidang Kesehatan Bangkit Indramawan Nugroho; Nindy Putri Lestari; Rifki Dwi Kurniawan; Gunawan Gunawan
Jurnal Ekonomi Teknologi dan Bisnis (JETBIS) Vol. 1 No. 1 (2022): JETBIS : Journal Of Economics, Technology and Business
Publisher : Al-Makki Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1372.209 KB) | DOI: 10.57185/jetbis.v1i1.2

Abstract

Kesehatan adalah syarat utama yang dibutuhkan oleh tubuh untuk menjalani kegiatan sehari hari. Tanpa kesehatan, manusia akan mengalami penurunan fisik. Kesehatan juga merupakan suatu kondisi dimana orang merasakan keseimbangan yang unik, dipengaruhi oleh faktor keturunan, teknologi dan cara hidup sehari hari-hari seperti makan, minum, bekerja, istirahat hingga berurusan dengan kehidupan yang mendalam. Kesehatan mempunyai faktor penting seperti menjaga pola asupan makanan, diperbanyak untuk meminum air putih setiap hari, tidur yang cukup dengan minimal sehari 8 jam. Data mining adalah informasi yang menggabungkan berbagai informasi dan penanganan yang digunakan untuk menemukan contoh dan koneksi yang tersimpan dalam kumpulan informasi besar yang ada dalam kumpulan data. Data mining adalah salah satu tahap waktu yang dihabiskan untuk menemukan contoh informasi dalam kumpulan data yang sangat besar atau disebut juga Knowledge Discovery in database (KDD). Di dalam tinjauan ini menggunakan metode Systematic Literature Review (SLR) yaitu dengan tahap awal mencari dan merekap jurnal terdahulu yang sesuai dengan penelitian ini dan tahap selanjutnya dengan meneliti isi jurnal tersebut.
PENINGKATAN KETERAMPILAN OPERASIONAL KOMPUTER BAGI PERANGKAT DAN KADER ORGANISASI MASYARAKAT DESA KETILENG sarif surorejo; Bangkit Indarmawan Nugroho; Aang Alim Murtopo
SOROT : Jurnal Pengabdian Kepada Masyarakat Vol 1 No 2 (2022): Juli
Publisher : Fakultas Teknik dan Ilmu Komputer (FASTIKOM) UNSIQ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32699/sorot.v1i2.3020

Abstract

Teknologi informasi berkembang dengan sangat cepat. Organisasi baik besar maupun kecil diharuskan beradaptasi terhadap perkembangan tersebut. Bagi organisasi, adaptasi teknologi informasi adalah sebuah kewajiban. Jika tidak dilakukan maka akan terjadi penurunan daya daing atau kepuasan masyarakat. Desa Ketileng Kecamatan Kramat Kabupaten Tegal merupakan salah satu organisasi pemerintahan yang bergerak dalam melayani masyarakat desa. Dalam kegiatanya dituntut untuk bisa memberikan pelayanan masyarakat dengan cepat dan tepat. Untuk itu diperlukan pelatihan untuk meningkatkan keterampilan operasional komputer bagi perangkat dan kader organisasi masyarakat Desa Ketileng. Pelatihan tersebut untuk meningkatkan kemampuan dalam hal penggunaan aplikasi microsoft office dalam hal ini microsoft word, microsoft exel serta manajemen file. Kegiatan Pelatihan dikemas dalam bentuk kegiatan pengabdian masyarakat oleh STMIK TEGAL. Kegiatan Pelatihan berjalan dengan lancar dan peserta sangat puas dengan kegiatan pelatihan tersebut. sebagian peserta melakukan tanya jawab hingga diskusi dengan narasumber. Hasil kegiatan pelatihan adalah meningkatnya kompetensi perangkat dan kader organisasi masyarakat Desa Ketileng.
The Utilization of Database for Administration Purposes as a Strategy Facing the New Normal: Prototype Development of e-Office Fahmi Charish Mustofa; Umar Ali Ahmad; Bangkit Indarmawan Nugroho
Kadaster: Journal of Land Information Technology Vol. 1 No. 2 (2023): Kadaster: Journal of Land Information Technology
Publisher : Sekolah Tinggi Pertanahan Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31292/kadaster.v1i2.16

Abstract

The rise of Industry 4.0 has revolutionized work dynamics, particularly evident in the widespread adoption of remote working practices. Employees are no longer confined to traditional office spaces; instead, they have the flexibility to work efficiently from various locations. This study delves into the creation of a remote presence application, named "The SIMPEG-Pres," within the framework of an "e-Office Application." Tailored for Ministry of Agraria and Spatial Planning/National Land Agency employees, this application incorporates remote check-in features, focusing on transparency, informativeness, and georeferenced capabilities. The e-Office application requires seamless extraction of attendance data from the services layer, manifesting as a mobile application. Employing the SIMPEG-Press application in the SIMPEG e-Office system, utilizing an Oracle database and Python backend, the research validates the "published or perished" paradigm and ensures database security. The methodology involves implementing a dummy database and categorizing employee attendance and location zones based on specific parameters, guaranteeing efficient system and user management practices. The study culminates in a comprehensive matrix outlining Land Information System (LIS) development within the BPN environment, analyzed through system development theory. Additionally, the research outlines potential opportunities and challenges in the future trajectory of LIS development, providing valuable insights for both practitioners and scholars. Keywords: Application Programming Interfaces, Location Based Services, Land Information System, Remote Presence Application, Python.
Optimization Selection on Deep Learning Algorithm for Stock Price Prediction in Indonesia Companies Gunawan Gunawan; Wresti Andriani; Sawaviyya Anandianskha; Aang Alim Murtopo; Bangkit Indarmawan Nugroho; Naella Nabila Putri Wahyuning Naja
Scientific Journal of Informatics Vol 11, No 1 (2024): February 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i1.47935

Abstract

Purpose: Share price movements after the COVID-19 pandemic experienced a decline in several sectors, especially in the share prices of the Aneka Tambang Company, which operates in the mining sector, the Wijaya Karya Company in the construction sector, and the Sinar Mas Company, which is a Holding Company. Several factors influence this, including investors' hesitation in investing their money. This research aims to predict stock price movements using a Deep Learning algorithm, which is optimized using Selection optimization at three large companies in Indonesia, namely PT. ANTAM, PT. WIKA, and PT. SINAR MAS. So that it can provide the correct information to investors to avoid losses.Method: research through collecting data from the three companies, preprocessing, and then analyzing research data with several alternatives. The combination of inputs from the three companies using the deep learning method is then optimized using selection optimization to produce the best accuracy and use the results of the RMSE evaluation.Results: The results of this research show that by using the Deep Learning method, the best evaluation results were obtained for the Company PT Wijaya Karya with an RMSE value of 0.432, an MAE value of 0.31505 and an MSE value of 1913.953. These results were then optimized using Selection optimization to obtain an RMSE increase of 0.022, namely 0.410.Novelty: The contribution of this research is to get the best combination of input variables obtained using the windowing process from the three companies, which are then processed using the Deep Learning method to produce the most accurate evaluation results from the three companies, then the results are optimized again using Selection optimization to get the more optimal results.
Penerapan Metode Rule Based System Untuk Menentukan Jenis Tanaman Pertanian Berdasarkan Ketinggian Dan Curah Hujan Ardhi Supratman; Bangkit Indarmawan Nugroho; Syefudin Syefudin; Rifki Dwi Kurniawan
Innovative: Journal Of Social Science Research Vol. 4 No. 2 (2024): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i2.10235

Abstract

Penelitian ini mengembangkan sebuah metode Rule Based System untuk menentukan jenis tanaman pertanian yang optimal berdasarkan ketinggian dan curah hujan. Dengan menggabungkan data ketinggian dan data curah hujan dari Badan Pusat Statistik (BPS) Kabupaten Tegal, sistem ini menggunakan pengetahuan ahli pertanian untuk menghasilkan rekomendasi tanaman. Implementasi dilakukan dengan menggunakan Python dan framework flask, menyajikan hasil dalam bentuk website. Evaluasi menunjukkan bahwa metode ini efektif dalam menghasilkan rekomendasi tanaman yang sesuai dengan kondisi lingkungan. Meskipun ada beberapa kasus ketidaksesuaian, hasilnya menegaskan potensi metode Rule Based System dalam meningkatkan akurasi pengambilan keputusan pertanian. Penelitian ini memberikan wawasan untuk pengembangan lebih lanjut dengan fokus pada peningkatan keakuratan dan validasi sistem yang lebih komprehensif.
Perbandingan Metode Fuzzy Mamdani dan Fuzzy Tsukamoto untuk Identifikasi Tingkat Serangan Penyakit pada Tanaman Bawang Merah Bryan Adam Hidayatullah; Bangkit Indarmawan Nugroho; Nugroho Adhi Santoso; Gunawan Gunawan
Innovative: Journal Of Social Science Research Vol. 4 No. 3 (2024): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i3.10506

Abstract

Penelitian ini membandingkan metode fuzzy Mamdani dan fuzzy Tsukamoto dalam mengidentifikasi tingkat serangan penyakit pada tanaman bawang merah untuk meningkatkan deteksi dini penyakit dan produktivitas pertanian. Menggunakan dataset parameter kesehatan tanaman, termasuk gejala penyakit dan kondisi lingkungan, penelitian mengaplikasikan kedua metode fuzzy tersebut untuk memperkirakan kerentanan tanaman terhadap penyakit. Hasil menunjukkan bahwa fuzzy Tsukamoto lebih akurat dan efisien, terutama dalam data kompleks. Penelitian ini memberikan pemahaman baru dalam aplikasi fuzzy logic pada penyakit tanaman bawang merah dan pengembangan model serupa di pertanian. Temuan ini penting untuk pengembangan sistem pendukung keputusan yang lebih efisien dalam pertanian, mengintegrasikan teknologi informasi dalam manajemen kesehatan tanaman.
PENERAPAN INTERAKSI MANUSIA DAN KOMPUTER PADA ANTARMUKA SISTEM INFORMASI AKADEMIK Isnaeni Hamidah; Bangkit Indarmawan Nugroho; Sarif Surorejo
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 5 No 1 (2023): EDISI 15
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v5i1.2467

Abstract

A systematic literature review (SLR) is a study conducted by collecting and examining relevant journals. This study uses the idea of human-computer interaction to provide design recommendations for an educational information system in STMIK Tegal. This work gave rise to the concept of Human Computer Interaction (HCI) which is used to describe SIA in STMIK Tegal but has not yet been implemented due to the incomplete effectiveness and efficiency of utility system functions. The authors recommendation is to design a web-based AIS focusing on the fundamental principles of HCI. HCI is the science that studies computer technologies that affect human work and activities. The goal of HCI is to make it easier for users to interact with their computers and get the feedback they want.
Application of the viola-jones algorithm method to recognize faces of Stmik Tegal students Muchamad Nauval Azmi; Bangkit Indarmawan Nugroho; Pingky Septiana; Gunawan Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 1 (2024): March: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i1.214

Abstract

This study examines the application of the modified Viola-Jones algorithm for student facial recognition at STMIK YMI Tegal, aiming to improve the efficiency and safety of the student attendance system. By adapting the algorithm to address the challenge of facial recognition accuracy from different angles and lighting conditions, a quasi-experimental quantitative design involved collecting data through photographic sessions with student subjects, followed by preprocessing to improve the quality of the analysis. The modification was evaluated for its ability to handle variations in facial and lighting conditions, showing significant improvements with 60% accuracy and precision, recall, and an F1-score of 71.43%. These findings demonstrate the effectiveness of the modification in improving facial recognition, potentially contributing significantly to attendance management and safety practices in educational settings. This research not only strengthens the existing literature.
Application of K-NN algorithm using gray level co-occurrence matrix for mango fruit classification cased on leaf image Bangkit Indarmawan Nugroho; Taufiq Aziz; Nugroho Adhi Santoso; Gunawan Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.233

Abstract

Mango is a fruit crop favored by the community, especially the people of Probolinggo. The most widely planted types of mangoes in the Probolinggo area are Saruman is, golek, and manalagi mangoes because they taste good. This study uses mango leaves as a dataset of three types of mangoes: arumanis, golek, and manalagi. Various ways can be done to distinguish mango types, one of which is by looking at the shape and texture of the mango tree leaves. Suppose you look at the data in the field. In that case, the shape and texture of the leaves of Saruman, golek, and manalagi mangoes have many similarities, making it difficult to distinguish with the naked eye. This research aims to classify mango types based on leaf shape and texture using the K-Nearest Neighbor method. The shape feature extraction process uses compactness and circularity methods, while the texture feature extraction process uses energy and contrast from the co-occurrence matrix approach. The classification method used is K-Nearest Neighbor. The test results of shape feature extraction took 0.043 seconds and texture 0.053 seconds
Application of sma method and ahp to predict the level of tidal flood vulnerability in Tegal City Bangkit Indarmawan Nugroho; Muhammad Farkhan; Sawaviyya Anandianskha; Gunawan Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.235

Abstract

This study examines the application of the Simple Moving Average (SMA) and Analytic Hierarchy Process (AHP) methods to predict tidal flood vulnerability in Tegal City. The objective is to develop a more accurate prediction method for tidal flood vulnerability. The methods used are a combination of SMA and AHP. The results indicate that this combination is effective in producing more accurate predictions compared to conventional methods. Villages such as Muarareja, Tegalsari, Mintaragen, and Panggung have been identified as highly vulnerable and require more intensive mitigation. The implications highlight the importance of a multi-method approach to understanding complex phenomena like flood vulnerability. For future research, it is recommended to integrate real-time weather data and consider socio-economic factors to enhance accuracy and relevance in disaster mitigation. The findings are expected to assist in better urban planning and resource allocation, as well as improve community resilience against tidal flood disasters.