Claim Missing Document
Check
Articles

Application of the viola-jones algorithm method to recognize faces of Stmik Tegal students Azmi, Muchamad Nauval; Nugroho, Bangkit Indarmawan; Septiana, Pingky; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 1 (2024): March: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i1.214

Abstract

This study examines the application of the modified Viola-Jones algorithm for student facial recognition at STMIK YMI Tegal, aiming to improve the efficiency and safety of the student attendance system. By adapting the algorithm to address the challenge of facial recognition accuracy from different angles and lighting conditions, a quasi-experimental quantitative design involved collecting data through photographic sessions with student subjects, followed by preprocessing to improve the quality of the analysis. The modification was evaluated for its ability to handle variations in facial and lighting conditions, showing significant improvements with 60% accuracy and precision, recall, and an F1-score of 71.43%. These findings demonstrate the effectiveness of the modification in improving facial recognition, potentially contributing significantly to attendance management and safety practices in educational settings. This research not only strengthens the existing literature.
Application of K-NN algorithm using gray level co-occurrence matrix for mango fruit classification cased on leaf image Nugroho, Bangkit Indarmawan; Aziz, Taufiq; Santoso, Nugroho Adhi; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.233

Abstract

Mango is a fruit crop favored by the community, especially the people of Probolinggo. The most widely planted types of mangoes in the Probolinggo area are Saruman is, golek, and manalagi mangoes because they taste good. This study uses mango leaves as a dataset of three types of mangoes: arumanis, golek, and manalagi. Various ways can be done to distinguish mango types, one of which is by looking at the shape and texture of the mango tree leaves. Suppose you look at the data in the field. In that case, the shape and texture of the leaves of Saruman, golek, and manalagi mangoes have many similarities, making it difficult to distinguish with the naked eye. This research aims to classify mango types based on leaf shape and texture using the K-Nearest Neighbor method. The shape feature extraction process uses compactness and circularity methods, while the texture feature extraction process uses energy and contrast from the co-occurrence matrix approach. The classification method used is K-Nearest Neighbor. The test results of shape feature extraction took 0.043 seconds and texture 0.053 seconds
Application of sma method and ahp to predict the level of tidal flood vulnerability in Tegal City Nugroho, Bangkit Indarmawan; Farkhan, Muhammad; Anandianskha, Sawaviyya; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.235

Abstract

This study examines the application of the Simple Moving Average (SMA) and Analytic Hierarchy Process (AHP) methods to predict tidal flood vulnerability in Tegal City. The objective is to develop a more accurate prediction method for tidal flood vulnerability. The methods used are a combination of SMA and AHP. The results indicate that this combination is effective in producing more accurate predictions compared to conventional methods. Villages such as Muarareja, Tegalsari, Mintaragen, and Panggung have been identified as highly vulnerable and require more intensive mitigation. The implications highlight the importance of a multi-method approach to understanding complex phenomena like flood vulnerability. For future research, it is recommended to integrate real-time weather data and consider socio-economic factors to enhance accuracy and relevance in disaster mitigation. The findings are expected to assist in better urban planning and resource allocation, as well as improve community resilience against tidal flood disasters.
Customer segmentation in sales transaction data using k-means clustering algorithm Nugroho, Bangkit Indarmawan; Rafhina, Ana; Ananda, Pingky Septiana; Gunawan, Gunawan
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 2 (2024): June: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i2.236

Abstract

Customer segmentation against sales transaction data using K-Means clustering algorithm. The purpose of this research is to develop and validate a customer segmentation model using an optimized K-Means clustering algorithm to enable more accurate customer grouping based on sales transaction data. The methodology used includes quantitative design combined with experimental techniques, quantitative data analysis, and model validation, where rice sales transaction data from Tegal city traditional market is processed to identify customer segments. The results showed the effectiveness of the optimized K-Means algorithm in grouping customers into three clusters based on purchase characteristics, and C4-SUPER rice proved to be the best-selling among consumers. These insights enable the development of more targeted and personalized marketing strategies, enrich the academic literature on customer data analysis, and move towards the practical application of more effective customer segmentation through the use of advanced analytical technologies
Penerapan Metode Rule Based System Untuk Menentukan Jenis Tanaman Pertanian Berdasarkan Ketinggian Dan Curah Hujan Supratman, Ardhi; Nugroho, Bangkit Indarmawan; Syefudin, Syefudin; Kurniawan, Rifki Dwi
Innovative: Journal Of Social Science Research Vol. 4 No. 2 (2024): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i2.10235

Abstract

Penelitian ini mengembangkan sebuah metode Rule Based System untuk menentukan jenis tanaman pertanian yang optimal berdasarkan ketinggian dan curah hujan. Dengan menggabungkan data ketinggian dan data curah hujan dari Badan Pusat Statistik (BPS) Kabupaten Tegal, sistem ini menggunakan pengetahuan ahli pertanian untuk menghasilkan rekomendasi tanaman. Implementasi dilakukan dengan menggunakan Python dan framework flask, menyajikan hasil dalam bentuk website. Evaluasi menunjukkan bahwa metode ini efektif dalam menghasilkan rekomendasi tanaman yang sesuai dengan kondisi lingkungan. Meskipun ada beberapa kasus ketidaksesuaian, hasilnya menegaskan potensi metode Rule Based System dalam meningkatkan akurasi pengambilan keputusan pertanian. Penelitian ini memberikan wawasan untuk pengembangan lebih lanjut dengan fokus pada peningkatan keakuratan dan validasi sistem yang lebih komprehensif.
Perbandingan Metode Fuzzy Mamdani dan Fuzzy Tsukamoto untuk Identifikasi Tingkat Serangan Penyakit pada Tanaman Bawang Merah Hidayatullah, Bryan Adam; Nugroho, Bangkit Indarmawan; Santoso, Nugroho Adhi; Gunawan, Gunawan
Innovative: Journal Of Social Science Research Vol. 4 No. 3 (2024): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i3.10506

Abstract

Penelitian ini membandingkan metode fuzzy Mamdani dan fuzzy Tsukamoto dalam mengidentifikasi tingkat serangan penyakit pada tanaman bawang merah untuk meningkatkan deteksi dini penyakit dan produktivitas pertanian. Menggunakan dataset parameter kesehatan tanaman, termasuk gejala penyakit dan kondisi lingkungan, penelitian mengaplikasikan kedua metode fuzzy tersebut untuk memperkirakan kerentanan tanaman terhadap penyakit. Hasil menunjukkan bahwa fuzzy Tsukamoto lebih akurat dan efisien, terutama dalam data kompleks. Penelitian ini memberikan pemahaman baru dalam aplikasi fuzzy logic pada penyakit tanaman bawang merah dan pengembangan model serupa di pertanian. Temuan ini penting untuk pengembangan sistem pendukung keputusan yang lebih efisien dalam pertanian, mengintegrasikan teknologi informasi dalam manajemen kesehatan tanaman.
Penerapan Metode Fuzzy K-Means Clustering untuk Pengelompokan Konten Halaman Web secara Otomatis Budiono, Wahyu; Nugroho, Bangkit Indarmawan; Santoso, Nugroho Adhi; Gunawan, Gunawan
Innovative: Journal Of Social Science Research Vol. 4 No. 3 (2024): Innovative: Journal Of Social Science Research (Special Issue)
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i3.12022

Abstract

Penerapan Metode Fuzzy K-Means Clustering untuk Pengelompokan Konten Halaman Web Secara Otomatis adalah penelitian yang bertujuan untuk mengotomatisasi proses pengelompokan konten halaman web menggunakan pendekatan clustering fuzzy. Dalam konteks ini, algoritma Fuzzy K-Means digunakan untuk mengelompokkan konten halaman web menjadi beberapa kategori berdasarkan kesamaan karakteristik tertentu. Metode ini memanfaatkan kelebihan pendekatan clustering fuzzy dalam menangani ketidakpastian dalam data dan kemampuan K-Means dalam mengelompokkan data menjadi beberapa cluster. Penelitian ini mencakup tahapan pra-pemrosesan data, ekstraksi fitur, dan implementasi algoritma Fuzzy K-Means Clustering. Eksperimen dilakukan menggunakan dataset yang berisi konten halaman web dari berbagai domain. Hasil evaluasi menunjukkan bahwa metode ini dapat menghasilkan pengelompokan konten halaman web yang sesuai dengan karakteristiknya secara otomatis, dengan tingkat akurasi dan interpretabilitas yang baik. Implementasi metode ini dapat memberikan kontribusi signifikan dalam pengelolaan dan penyaringan konten web secara efisien.
Penerapan Metode Fuzzy K-Means Clustering untuk Pengelompokan Konten Halaman Web secara Otomatis Budiono, Wahyu; Nugroho, Bangkit Indarmawan; Santoso, Nugroho Adhi; Gunawan, Gunawan
Innovative: Journal Of Social Science Research Vol. 4 No. 3 (2024): Innovative: Journal Of Social Science Research (Special Issue)
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i3.12065

Abstract

Penerapan Metode Fuzzy K-Means Clustering untuk Pengelompokan Konten Halaman Web Secara Otomatis adalah penelitian yang bertujuan untuk mengotomatisasi proses pengelompokan konten halaman web menggunakan pendekatan clustering fuzzy. Dalam konteks ini, algoritma Fuzzy K-Means digunakan untuk mengelompokkan konten halaman web menjadi beberapa kategori berdasarkan kesamaan karakteristik tertentu. Metode ini memanfaatkan kelebihan pendekatan clustering fuzzy dalam menangani ketidakpastian dalam data dan kemampuan K-Means dalam mengelompokkan data menjadi beberapa cluster. Penelitian ini mencakup tahapan pra-pemrosesan data, ekstraksi fitur, dan implementasi algoritma Fuzzy K-Means Clustering. Eksperimen dilakukan menggunakan dataset yang berisi konten halaman web dari berbagai domain. Hasil evaluasi menunjukkan bahwa metode ini dapat menghasilkan pengelompokan konten halaman web yang sesuai dengan karakteristiknya secara otomatis, dengan tingkat akurasi dan interpretabilitas yang baik. Implementasi metode ini dapat memberikan kontribusi signifikan dalam pengelolaan dan penyaringan konten web secara efisien.
SYTEMATIC LITERAURE REVIEW : PENERAPAN METODE ALGORITMA C4,5 UNTUK KLASIFIKASI Srifani, Dewi; Nugroho, Bangkit Indarmawan; Santoso, Nugroho Adhi
Jurnal Informatika UPGRIS Vol 8, No 2: Desember 2022
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jiu.v8i2.12507

Abstract

Abstract---Data mining is extracting data in processing information with the aim of finding important patterns in piles of data. With data mining we can classify, predict, and make a decision. Classification is a way of grouping a data according to the characteristics of a data to be classified. In the process, the classification is divided into two, namely manually and with the help of technology. Manual classification is a classification carried out by humans without the help of technology, while classification with the help of technology has several algorithms, including C4.5, Naive Bayes, Fuzzy, and K-Nearest Neighbor. 5 for classification, a systematic approach is used in the form of a systematic literature review (SLR). SLR is defined as a process in which the identification, assessment, and interpretation of all available research evidence is carried out with the aim of answering a number of research questions
Comparison of naïve bayes and KNN for herbal leaf classification Nugroho, Bangkit Indarmawan; Khusni, Muhammad Wazid; Ananda, Pingky Septiana; Gunawan, Gunawan
Jurnal Mandiri IT Vol. 13 No. 1 (2024): July: Computer Science and Field
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mandiri.v13i1.297

Abstract

This study aims to compare the effectiveness of two classification algorithms, namely Naïve Bayes Classifier and K-Nearest Neighbor (KNN), in classifying herbal leaves. This research design uses a quantitative approach with experimental analysis and model validation. The dataset consisted of images of papaya leaves, pandanus, cat's whiskers, and betel nut taken in different lighting conditions. The methodology includes pre-processing of data by converting images into grayscale, feature extraction using Gray Level Co-occurrence Matrix (GLCM), and application of Naïve Bayes and KNN algorithms. The main results showed that KNN achieved 90.00% accuracy with precision, recall, and F1-score of 88.33% respectively, higher than Naïve Bayes which had 82.50% accuracy, 81.46% precision, 85.83% recall, and 82.27% F1-score. In conclusion, KNN is superior in the classification of herbal leaves to Naïve Bayes, although it requires a longer computational time. Further research is recommended to optimize algorithm parameters and explore the integration of deep learning techniques to improve classification accuracy and efficiency.