Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Information Technology

Application of the K-Nearest Neighbor (K-NN) Algorithm for Detecting Banana Harvest Feasibility Citra Citra; Arnah Ritonga; Arnita Arnita; Said Iskandar Al Idrus; Debi Yandra Niska
J-INTECH ( Journal of Information and Technology) Vol 13 No 02 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i02.2064

Abstract

This study focuses on detecting banana harvest feasibility at the green-ripe stage, an area often overlooked in previous studies that focus only on general ripeness. The objective of this research was to develop a system based on the K-Nearest Neighbor (K-NN) algorithm to classify bananas as “Ready for Harvest” or “Not Ready for Harvest” using digital image processing. The system utilizes Hue Saturation Value (HSV) for color analysis and Gray Level Co-occurrence Matrix (GLCM) for texture identification. Unlike other methods, the combination of HSV and GLCM provides richer, complementary features, improving classification accuracy. The study was conducted at a banana plantation in Kwala Bekala Village, Medan Johor District, with 200 banana images taken from five different locations. The K-NN algorithm, with a value of K = 3, was chosen to avoid tie votes and ensure computational efficiency. The system achieved an accuracy of 94%, with precision of 93.5%, recall of 92.8%, and an F1-score of 93%. In beta testing with 33 respondents (18 farmers and 15 non-farmers), the system achieved a user satisfaction rate of 90%. Misclassifications occurred due to factors such as lighting variations and background noise. The study demonstrates the practical benefit of using the K-NN algorithm for determining the optimal harvest time, helping farmers make more accurate decisions, reducing waste, and increasing market competitiveness. This research fills the gap in detecting green-ripe bananas, providing an innovative solution to optimize harvest timing in the agricultural industry.
Identifikasi Tandan Buah Segar (TBS) Kelapa Sawit Layak Jual dengan Algoritma K-Nearest Neighbors Dechy Deswita Indriani.S; Kana Saputra S; Said Iskandar Al Idrus; Susiana Susiana; Adidtya Perdana
J-INTECH ( Journal of Information and Technology) Vol 13 No 02 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i02.2066

Abstract

Indonesia is the world's largest palm oil producer, with annual production reaching more than 45 million tons. The quality of oil palm fresh fruit bunches (FFB) determines the quality of the oil produced. The quality of FFBs can be seen through their maturity and health. Fruit that is not ripe, overripe, or contaminated with mold can reduce oil quality due to high levels of free fatty acids (FFA). This research aims to build a classification model of FFB marketability using the K-Nearest Neighbors (K-NN) algorithm with RGB and GLCM features. Image data was collected from the plantation, then processed through the stages of preprocessing, feature extraction, and normalization. The model was tested in three approaches, namely using RGB-GLCM combination features, RGB only, and GLCM only, with various data sharing scenarios, namely 70:30, 80:20, and 90:10, as well as varying k values, namely k = 3, 5, 7, 9. The evaluation results show that the RGB-GLCM feature combination model in the 80:20 data sharing scenario and k = 5 value is the most optimal model, with accuracy reaching 88%. In addition to providing high accuracy, this model also shows good stability compared to the RGB and GLCM models alone. This proves that the use of a combination of features is more effective and reliable in identifying the marketability of oil palm FFB compared to the use of a single feature.
Co-Authors Adidtya Perdana Ahmad Landong Alfattah Atalarais Ananda Hatmi, Reza Angga Warjaya Arifin, Khusnul Arnah Ritonga Arnita Arnita Arnita Arnita Arnita Asiah Asiah Billroy A Ginting Buulolo, Fatizanolo Chairunisah Chairunisah, Chairunisah Citra Citra Debi Yandra Niska Dechy Deswita Indriani.S Devi Juliana Napitupulu Diah Retno Wahyuningrum Dian Septiana DIdi Febrian Eka Nainggolan, Rinay Eko Prasetya, Eko Elvis Napitupulu, Elvis Fadlan Isa Damanik Fadlan Isa Damanik Farhan Ramadhan, Haikal Fauziyah Harahap Fira Dilla Fitria, Amanda Hermawan Syahputra Ichwanul Muslim Karo Karo Ihsan Zulfahmi Inna Muthmainnah Insan Taufik Izwita Dewi Josafat Simanjutak, Todo Josua Christian Kana Saputra S Kana Saputra S Khairani, Nerli Kuraini, Atifa Nuzulul Lazuardi Lazuardi Lubis, Afiq Alghazali Lubis, M. Revano Ananda Luge, Miclyael Malik Fajri, Maulana MANSUR AS Manullang, Sudianto Manurung, Jeremia Marpaung, Faridawaty Mika . Layakana Molliq Rangkuti, Yulita Mualiawan Firdaus Muhammad Noer Fadlan Muhammad Rifqi Maulana Muthmainnah, Inna Nabila, Rinjani Cyra Nafisa, Anti Nada Nasution, Hamidah . Nice R Refisis Niska, Debi Yandra Nurkhalizah, Rezeki Nurliani Manurung Olga Laura Mahlona Pane, M Iqbal Anata Pane, Yeremia Yosefan Puji Prastowo, Puji Purba, Boy Hendrawan Rahmani . . Ramadhani, Fanny Refisis, Nice Rejoice Reza Al Alif Reza Al Alif Rovita Indah Ayu Ningtias Salsabila, Aqila Siburian, Rulli Prasetio Bane Sihombing, Jeremia Jordan Simamora, Elmanani Simanjorang, Rio Givent A Simanungkalit, Ada Novisari D. Simbolon, Mula Tua Elia Sinaga, Marlina Setia Siregar, Ary Prandika Sri Mulyana Sri Mulyana Suryani, Nita Susiana Susiana Susiana Susiana Syarida Aini, Desti Tarigan, Dewan Dinata Tarigan, Yosua Yosephine Trisna Utami Putri Wahabi Hasibuan, Rahman Warjaya, Angga Wilma Handayani Yuanita Rachmawati Yulita Molliq Rangkuti Yulita Molliq Rangkuti Yulita Molliq Rangkuti Yusuf, Yusnaeni Zufahmi Indra Zulfahmi Indra, Zulfahmi