Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : PREDATECS: Public Research Journal of Engineering, Data Technology and Computer Science

Performance Comparison of ARIMA, LSTM and SVM Models for Electric Energy Consumption Analysis Azani, Nilam Wahdiaz; Trisya, Cintia Putri; Sari, Laras Mayangda; Handayani, Hani; Alhamid, Muhammad Rizki Miftha
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.869

Abstract

The changing needs of electrical energy result in the electrical power needed for everyday life being unstable, so planning and predicting how much electrical load is needed so that the electricity generated is always of good quality. So it is necessary to predict the consumption of electrical energy by using forecasting on the machine learning method. Support Vector Machine (SVM), Autoregressive Integrated Motion Average (ARIMA), and Long Short-Term Memory (LSTM) are models that are often used to overcome patterns in predictions. To find out the best models how to predict electricity consumption in the future and how the SVM, LSTM, and ARIMA algorithms perform in predicting electricity consumption. This research will look for the RMSE value and prediction time, then compare it with the best average value. The results of the study show that the ARIMA model is able to predict electricity usage for the next 1 year period, in the evaluation using the RMSE metric, where SVM shows a much lower value than ARIMA and LSTM. In this case, SVM achieved RMSE of 0.020, while ARIMA and LSTM achieved RMSE of 7.659 and 11.4183, respectively. Even though SVM has a lower RMSE, it is still unable to predict electricity usage for the next 1 year with sufficient accuracy.