Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Rekam Medis dan Manajemen Informasi Kesehatan

Feature Selection Information Gain pada Klasifikasi Pasien Penyakit Jantung (Heart Disease) Siska Narulita; Priyo Nugroho Adi
Jurnal Rekam Medis & Manajemen Infomasi Kesehatan Vol. 4 No. 1 (2024): Juni 2024
Publisher : Universitas Nasional Karangturi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53416/jurmik.v4i1.240

Abstract

Heart disease, also known as cardiovascular disease, is a condition where there is a blockage or narrowing of blood vessels that can lead to heart attack, chest pain, or stroke. It needs appropriate medical treatment because this disease can be the cause of death. Data mining methods are helpful in diagnosing and treating heart disease. Data mining methods can play a major role in the process of improving the quality of care for heart disease patients, providing valuable information for informed decision-making regarding prevention and treatment. The data analysis process uses classification algorithms, namely Decision Tree (C4.5), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) combined with feature selection information gain method. The results show that data mining methods are very useful in diagnosing and treating heart disease. The highest percentage of correct classifications for both models before and after the implementation of feature selection information gain was obtained by the RF algorithm, which amounted to 95.71%. However, the implementation of the feature selection information gain method in this study did not contribute significantly to improving the classification quality of each algorithm used.
Optimasi Algoritma K-Nearest Neighbor (k-NN) dengan Wrapper Forward Selection untuk Deteksi Penderita Breast Cancer Oei Joviano Matthew Wijaya; Siska Narulita
Jurnal Rekam Medis & Manajemen Infomasi Kesehatan Vol. 5 No. 1 (2025): Juni 2025
Publisher : Universitas Nasional Karangturi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53416/jurmik.v5i1.324

Abstract

Breast cancer atau kanker payudara adalah penyakit yang disebabkan karena adanya pertumbuhan sel-sel tubuh yang tidak normal dan mengambil alih sel yang masih sehat pada daerah payudara. Breast cancer sangat diperlukan penanganan dini agar sel kanker pada payudara tidak menyebar secara luas, karena breast cancer dapat menyebabkan kematian. Data mining dapat menjadi salah satu opsi solusi dalam membantu diagnosis kanker payudara. Data mining dapat berperan dalam membantu pengambilan keputusan, karena data yang sudah diolah dapat digunakan dalam analisis sebelum pengambilan keputusan. Analisis data dalam penelitian ini menggunakan algoritma klasifikasi k-Nearest Neighbor (k-NN) yang dioptimasi menggunakan teknik feature selection, yaitu wrapper forward selection. Hasil penelitian menunjukkan bahwa data mining sangat berguna dan bermanfaat dalam menganalisis dan mendiagnosis penyakit breast cancer. Hasil penelitian menunjukkan bahwa nilai persentase akurasi, presisi, dan recall pada model yang menggunakan forward selection menghasilkan persentase yang lebih tinggi daripada yang tidak menggunakan forward selection, yaitu sebesar 96,19%. Sedangkan model yang tidak menggunakan teknik forward selection menghasilkan tingkat akurasi sebesar 84,16%. Sehingga dalam penelitian ini, teknik forward selection sangat berpengaruh dalam meningkatkan akurasi pada model yang terbentuk.
Deteksi Penderita Diabetes dengan Algoritma Random Forest dan Backward Elimination Vic Jeremy Prajogo; Siska Narulita
Jurnal Rekam Medis & Manajemen Infomasi Kesehatan Vol. 5 No. 1 (2025): Juni 2025
Publisher : Universitas Nasional Karangturi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53416/jurmik.v5i1.334

Abstract

Diabetes merupakan salah satu penyakit kronis yang membutuhkan deteksi dini secara akurat untuk penanganan yang tepat. Penelitian ini bertujuan untuk mengoptimalkan proses deteksi penderita diabetes menggunakan kombinasi algoritma Random Forest dengan teknik Backward Elimination sebagai salah satu metode feature selection. Dataset yang digunakan berasal dari database publik yang diambil dari Kaggle, terdiri dari 768 sampel dengan 9 atribut, termasuk kadar glukosa, tekanan darah, indeks massa tubuh, dan faktor risiko lainnya. Metodologi penelitian meliputi empat tahap utama, data preparation untuk memastikan kualitas dataset, pre-processing menggunakan Backward Elimination untuk seleksi fitur optimal, implementasi algoritma Random Forest untuk klasifikasi, dan evaluasi performa menggunakan confusion matrix. Hasil penelitian menunjukkan peningkatan signifikan dalam performa model setelah implementasi Backward Elimination, dengan peningkatan accuracy dari 83,08% menjadi 99,78%, precision dari 79,37% menjadi 99,67%, sementara recall tetap konsisten pada 100%. Optimasi menggunakan Backward Elimination terbukti efektif dalam mengeliminasi fitur-fitur yang kurang berkontribusi terhadap akurasi prediksi, menghasilkan model yang lebih efisien dan akurat. Temuan ini mengindikasikan bahwa kombinasi Random Forest dengan Backward Elimination tidak hanya meningkatkan akurasi deteksi penderita diabetes secara substansial, tetapi juga berpotensi untuk diimplementasikan dalam sistem pendukung keputusan klinis untuk membantu diagnosis dini diabetes.