Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Journal of Computer Networks, Architecture and High Performance Computing

The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia) Nugraha, Dimas Reza; Zy, Ahmad Turmudi; Sunge, Aswan Supriyadi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4171

Abstract

Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.
Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models: Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models Muttaqin, Ahmad Fadhiil; Sunge, Aswan Supriyadi; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5085

Abstract

Earthquakes are natural disasters with significant impacts on people and the environment, so effective methods for prediction are needed to improve preparedness and risk mitigation. This study analyzes the performance of three algorithms Support Vector Machine (SVM), Naïve Bayes, and K-Means in predicting earthquakes in Indonesia using a dataset containing 4,645 historical data from BMKG processed through preprocessing, data separation, analysis, and performance evaluation with RapidMiner tools. The results show that SVM has the best performance with 99.87% accuracy, 99.83% precision, and 95.61% recall, making it highly relevant for earthquake prediction. Naïve Bayes achieved 90.31% accuracy and 95.08% recall, but the low precision (57.24%) shows the limitations of this model. K-Means successfully clusters earthquakes into two categories: small (3,661 data) and large (55 data) earthquakes, with a Davies-Bouldin Index value of 0.579, reflecting good clustering quality. Based on these results, SVM is recommended as a superior earthquake prediction model, while Naïve Bayes and K-Means are more suitable for additional analysis. This approach confirms the potential of machine learning algorithms in supporting future earthquake risk mitigation.
Analysis of Predicting the Number of Rejected Chips Using Random Forest at PT. Wahyu Kartumasindo Internasional Supriyadi, Agus; Sunge, Aswan Supriyadi; Tedi, Nanang
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 4 (2025): Articles Research October 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i4.7028

Abstract

Manufacturing industries face significant challenges in maintaining consistent product quality, particularly in minimizing reject rates across production machines, as high reject levels not only increase operational costs but also reduce overall efficiency and competitiveness. This study aims to develop a predictive approach using the Random Forest algorithm to forecast monthly chip rejects across different production machines, with historical reject data consisting of 1,820 records from June 2023 to September 2024 analyzed based on four primary reject categories and five production machines (DCL1, DCL2, CMI200, CMI200+, and YMJ400). The Random Forest model was applied to classify and predict reject patterns, and its performance was evaluated based on prediction accuracy and error rates, showing that the algorithm is effective in predicting reject counts with an absolute error of 0.640 ± 0.183, especially for lower reject values under 300, although accuracy decreases when handling higher reject levels above 500. Machine-level analysis further reveals that DCL1 and DCL2 consistently contribute the highest reject counts with high variability, while CMI200 and CMI200+ demonstrate stable performance with most rejects below 300, and YMJ400 generally records lower rejects but occasionally exhibits spikes, suggesting inconsistent performance. In conclusion, the Random Forest model provides a reliable predictive framework for monitoring reject trends, identifying DCL1 and DCL2 as priority targets for improvement, and supporting proactive maintenance strategies to enhance overall production quality.
The Use of K-Means Algorithm Clustering in Grouping Life Expectancy (Case Study: Provinces in Indonesia) Nugraha, Dimas Reza; Zy, Ahmad Turmudi; Sunge, Aswan Supriyadi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4171

Abstract

Life expectancy is defined as information that illustrates the age of the death of a population. Life expectancy is a general picture of the state of a region. If the infant mortality rate is high, then the life expectancy in the area is low. And vice versa, if the infant mortality rate is low, the life expectancy in the region is high. Life expectancy is also a benchmark for government actions in improving the welfare of society and the human development index. For this reason, it is necessary to group life expectancy data to make it easier to determine the provinces with high, middle, and low life expectancy. The results of cluster testing using the silhouette score method showed that two subjects had a low silhouette score level, which caused the cluster value to be less than optimal, namely East Java  & Gorontalo. The clustering results found that the cluster was divided into 3, namely cluster 1, with a high level of life expectancy consisting of 10 provinces, namely East Java, Riau, North Sulawesi, Bali, North Kalimantan, DKI Jakarta, West Java, Central Java, East Kalimantan and Special Region of Yogyakarta. Cluster 2 has a level of middle-life expectancy consisting of 18 provinces, namely Gorontalo, North Maluku, Central Sulawesi, South Kalimantan, North Sumatra, Bengkulu, West Sumatra, Central Kalimantan, Aceh, South Sumatra, Banten, Kep. Riau, South Sulawesi, Kep. Bangka Belitung, Lampung, West Kalimantan, Southeast Sulawesi and Jambi. Cluster 3, with a low level of life expectancy, consists of 6 provinces, namely West Sulawesi, Papua, Maluku, West Papua, West Nusa Tenggara, and East Nusa Tenggara.
Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models: Comparative Analysis of Earthquake Prediction with SVM, Naïve Bayes, and K-Means Models Muttaqin, Ahmad Fadhiil; Sunge, Aswan Supriyadi; Zy, Ahmad Turmudi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5085

Abstract

Earthquakes are natural disasters with significant impacts on people and the environment, so effective methods for prediction are needed to improve preparedness and risk mitigation. This study analyzes the performance of three algorithms Support Vector Machine (SVM), Naïve Bayes, and K-Means in predicting earthquakes in Indonesia using a dataset containing 4,645 historical data from BMKG processed through preprocessing, data separation, analysis, and performance evaluation with RapidMiner tools. The results show that SVM has the best performance with 99.87% accuracy, 99.83% precision, and 95.61% recall, making it highly relevant for earthquake prediction. Naïve Bayes achieved 90.31% accuracy and 95.08% recall, but the low precision (57.24%) shows the limitations of this model. K-Means successfully clusters earthquakes into two categories: small (3,661 data) and large (55 data) earthquakes, with a Davies-Bouldin Index value of 0.579, reflecting good clustering quality. Based on these results, SVM is recommended as a superior earthquake prediction model, while Naïve Bayes and K-Means are more suitable for additional analysis. This approach confirms the potential of machine learning algorithms in supporting future earthquake risk mitigation.