Claim Missing Document
Check
Articles

Found 15 Documents
Search

THE NON-COPRIME GRAPHS OF UPPER UNITRIANGULAR MATRIX GROUPS OVER THE RING OF INTEGER MODULO WITH PRIME ORDER AND THEIR TOPOLOGICAL INDICES Afdhaluzzikri, M.; Wardhana, I Gede Adhitya Wisnu; Maulana, Fariz; Biswas, Hena Rani
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 1 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss1pp547-556

Abstract

In its application graph theory is widely applied in various fields of science, including scheduling, transportation, industry, and structural chemistry, such as topological indexes. The study of graph theory is also widely applied as a form of representation of algebraic structures, including groups. One form of graph representation that has been studied is non-coprime graphs. The upper unitriangular matrix group is a form of group that can be represented in graph form. This group consists of upper unitriangular matrices, which are a special form of upper triangular matrix with entries in a ring R and all main diagonal entries have a value of one. In this research, we look for the form of a non-coprime graph from the upper unitriangular matrix group over a ring of prime modulo integers and several topological indexes, namely the Harmonic index, Wiener index, Harary index, and First Zagreb index. The findings of this research indicate that the structure of the graph and the general formula for the Harmonic index, Wiener index, Harary index, and First Zagreb index were successfully obtained.
Numerical Invariants Of Nilpotent Graphs In Integer Modulo Rings Malik, Deny Putra; Karang, Gusti Yogananda; Aini, Qurratul; Maulana, Fariz; Satriyantara, Rio
Contemporary Mathematics and Applications (ConMathA) Vol. 7 No. 2 (2025)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v7i2.69650

Abstract

Graph theory offers a robust framework for examining algebraic structures, especially rings and their elements. This paper focuses on the nilpotent graph of rings of the form Zpk​, where p is a prime and k∈N, investigating both their structural and numerical properties. We begin by characterizing the nilpotent elements in these rings and examining their relationship to ring ideals. The study then presents theoretical results on key graph invariants, including connectivity, chromatic number, clique number, and specific subgraph configurations. To complement these, we also analyze numerical invariants such as edge count and degree distribution, which reveal deeper connections between ring-theoretic and graph-theoretic properties. Our results highlight consistent structural patterns in nilpotent graphs of Zpk ​and provide a concrete contribution to algebraic graph theory by bridging properties of commutative rings and their associated graphs.
Indeks Sombor dari Graf Koprima Prima untuk Grup Bilangan Bulat Modulo Abdurahim, Abdurahim; Satriyantara, Rio; Maulana, Fariz; Wardhana, I Gede Adhitya Wisnu; Robbaniyyah, Nuzla Af’idatur
JURNAL DIFERENSIAL Vol 7 No 2 (2025): November 2025
Publisher : Program Studi Matematika, Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jd.v7i2.21120

Abstract

The prime coprime graph of integers modulo n is an ordered pair consisting of a set of vertices (integers modulo n) and edges. Two distinct vertices are said to be adjacent if the greatest common divisor (gcd) of their orders is either 1 or a prime number. This article discusses the prime coprime graph of integers modulo n for n = pq, where p < q are prime numbers. The results of the study include the degree characteristics of the vertices and the subgraphs formed. Additionally, the Sombor index of the graph is also determined.
Peran Penting Software Quality Assurance Dalam Pengembangan Aplikasi Respiar, Boby; Fernanda, Arif; Taryadi, Taryadi; Maulana, Fariz; Anshor, Abdul Halim
Journal Scientific of Mandalika (JSM) e-ISSN 2745-5955 | p-ISSN 2809-0543 Vol. 5 No. 12 (2024)
Publisher : Institut Penelitian dan Pengembangan Mandalika Indonesia (IP2MI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/10.36312/vol5iss12pp535-540

Abstract

Software Quality Assurance (SQA) has an important role in application development, specifically to ensure quality, reliability, and end-user satisfaction. This study aims to explore the role of SQA in improving the quality of applications through the application of effective standards and testing methods. By implementing SQA, potential errors can be detected early, reducing the risk and costs that may occur due to software defects. This study uses a qualitative approach through literature studies and interviews with IT professionals to gain a deeper understanding of the impact of SQA on the development process. The results show that SQA not only improves the quality of the final product but also improves the efficiency of the development team. Therefore, the implementation of SQA should be an inseparable component in every stage of application development.
Implementasi Modul Olimpiade SMP Di SMPN 2 Kuripan Lombok Barat Putra, Lalu Riski Wirendra; Pratama, Rendi Bahtiar; Karang, Gusti Yogananda; Irwansyah, Irwansyah; Wardhana, I Gede Adhitya Wisnu; Romdhini, Mamika Ujianita; Abdurahim, Abdurahim; Maulana, Fariz; Satriyantara, Rio; Awanis, Zata Yumni; Putri, Syaftirridho; Graha, Syifa Salsabila Satya; Wahidah, Fathul Maulina; Pratiwi, Lia Fitta; Pradana, Satriawan; Siboro, Ayes Malona; Farwan, Farwan
Sinergi dan Harmoni Masyarakat MIPA Vol. 1 No. 1 (2024): Oktober
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/sinonim.v1i1.5517

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk mengimpelementasikan modul pembelajaran olimpiade matematika bagi siswa SMPN 2 Kuripan. Kebutuhan akan modul ini didasarkan pada rendahnya akses siswa terhadap materi-materi persiapan olimpiade yang terstruktur dan sesuai dengan kemampuan serta kebutuhan mereka. Metode yang digunakan dalam pengembangan modul ini meliputi analisis kebutuhan, desain dan pengembangan modul, serta uji coba. Modul ini dirancang untuk mencakup berbagai topik matematika yang sering muncul dalam olimpiade, disertai dengan contoh soal dan pembahasan yang mendalam. Hasil dari kegiatan ini menunjukkan bahwa penggunaan modul olimpiade matematika ini dapat meningkatkan pemahaman siswa terhadap materi olimpiade, serta memotivasi mereka untuk lebih aktif dalam mengikuti kompetisi. Evaluasi melalui uji coba menunjukkan respon positif dari siswa, dengan peningkatan signifikan pada hasil latihan soal.