Claim Missing Document
Check
Articles

Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression Muhammad Raja Nurhusen; Jamaludin Indra; Kiki Ahmad Baihaqi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 1 (2023): Januari 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i1.5491

Abstract

In Indonesia itself, fuel is a very important raw material for society, especially for the industrial sector. The fuel price hike policy sparked controversy on social media, one of which was Twitter. After the increase in fuel prices was passed, every day on Twitter was filled with tweets with the hashtag (#bbmnaik). The pros and cons that exist in the community regarding the increase in fuel prices is an interesting research material. This study aims to analyze public sentiment whether it is negative or supportive. The method used is Logistic Regression assisted by the Confusion Matrix for evaluation calculations. The advantage of this method compared to other methods is that the Logistic Regression method is often used to create a predictive model whose result values are in the form of yes/no, true/false, thus this method is very suitable for this research. The data used is 3000 data with keywords (increase in fuel prices). The results of the analysis that has been carried out show that positive sentiments get an accuracy value of 38% and negative sentiments of 80%. Classification performance of the Logistic Regression method gains 73%. The results of evaluation calculations with the Confusion Matrix using data testing as many as 600 data get an accuracy rate of 77%, a precision value of 95%, a recall value of 79%, and an f1 score of 86%. So it can be concluded from the results of the sentiment analysis that has been done that the public is more pro against the rejection of the increase in fuel prices.
KOMPARASI ALGORITMA NAïVE BAYES, SUPPORT VECTOR MACHINE, DAN LOGISTIC REGRESSION PADA ANALISIS SENTIMEN PENGGUNA APLIKASI TRANSPORTASI ONLINE Krisna Perdana Jaya Sitompul; Adi Rizky Pratama; Kiki Ahmad Baihaqi
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 10, No 1 (2023)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v10i1.616

Abstract

Online transportation is one of the transportation that is increasingly in demand by the public at this time. Grab is an online transportation application that has many users in Indonesia. However, this system certainly has many shortcomings that are felt by users. One way to find out user satisfaction and disappointment with the application is to do sentiment analysis. By analyzing the deficiencies of the application, the company can find out the shortcomings of the application and how to fix it. The purpose of this study is to compare the accuracy between the Support Vector Machine, Naive Bayes, and Logistic Regression algorithms by conducting sentiment analysis on Grab application review data. The results of the comparative test found that the Naive Bayes algorithm has the best performance compared to other classification algorithms with an accuracy obtained by the Naive Bayes algorithm of 88.5%, while the Support Vector Machine algorithm has the lowest accuracy with an accuracy of 85.5%. So it can be concluded that the Naive Bayes algorithm has a better value than the Logistic Regression and Support Vector Machine algorithms. Keywords: Grab, Support Vector Machine, Naive Bayes, Logistic Regression Transportasi online adalah salah satu transportasi yang semakin diminati masyarakat pada saat ini. Grab adalah alah  satu  aplikasi  trasportasi online  yang  memiliki  pengguna  bisa  dikatakan  banyak  di  Indonesia. Namun  dalam  system  ini  pasti  memiliki banyak  kekurangan  yang  dirasakan  penggunanya. Salah satu cara untuk mengetahui kepuasan dan kekecewaan pengguna terhadap aplikasi tersebut yaitu melakukan analisis sentimen.  Dengan  menganalisis  kekurangan  dari  aplikasi  perusahaan dapat mengetahui kekurangan dari aplikasi dan bagaimana cara memperbaikinya. Tujuan penelitian ini untuk mengetahui perbandingan keakurasian antara algoritma Support Vector Machine, Naive Bayes, dan Logistic Regression dengan melakukan analisis sentimen pada data ulasan aplikasi Grab . Hasil pengujian komparasi ditemukan bahwa algoritma Naive bayes memiliki kinerja terbaik dibandingkan algoritma klasifikasi lainnya dengan akurasi yang di dapat algoritma Naive bayes sebesar 88.5%, sedangkan algoritma Support Vector Machine memiliki akurasi terendah dengan akurasi sebesar 85.5%. Sehingga dapat disimpulkan bahwa algoritma Naive bayes memiliki nilai yang lebih baik dibandingkan algoritma Logistic Regression dan Support Vector Machine.Kata kunci: Grab, Support Vector Machine, Naive Bayes, Logistic Regression
Implementasi Algoritma Logistic Regression Untuk Klasifikasi Penyakit Stroke suhliyyah; Hanny Hikmayanti Handayani; Kiki Ahmad Baihaqi
SYNTAX Jurnal Informatika Vol 12 No 01 (2023): Mei 2023
Publisher : Universitas Singaperbangsa Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35706/syji.v12i01.8329

Abstract

Stroke menyebabkan kerusakan pada bagian otak yang muncul secara mendadak akibat dari gangguan peredaran darah non traumatik. Gangguan tersebut dapat menimbulkan gejala antara lain kelumpuhan seisi wajah atau anggota badan, bicara tidak jelas, bicara tidak lancar, gangguan penglihatan dan perubahan kesadaran. Penyakit stroke merupakan penyakit yang menjadi penyebab kematian nomor tiga tertinggi di indonesia setelah penyakit kanker dan jantung. Di indonesia, jumlah kasus dan prevalensi stroke belum diketahui secara jelas. Diperkirakan 500.000 penduduk terkena stroke setiap tahunnya, sekitar 2,5% atau 12.500 orang meninggal dunia dan sisanya mengalami cacat ringan. Hampir setiap hari, atau minimal rata-rata tiga hari sekali ada seseorang penduduk indonesia baik tua maupun muda meninggal dunia karena serangan penyakit stroke. Penelitian ini dibuat menggunakan metode Confusion matrix dan pengujian menggunakan algoritma Logistic Regression, penelitian ini dilakukan dengan pengumpulan data dan hasil analisis untuk meningkatkan akurasi, berdasarkan variabel berpengaruh meliputi jenis kelamin, hipertensi, penyakit jantung, kadar gula darah, berat badan dan status merokok. Berdasarkan hasil pengumpulan data yang telah dilakukan sebanyak 4981 data diperoleh hasil akurasi sebesar 94%.
Penerapan Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) untuk Mendiagnosa Penyakit Bercak Daun Cabai: Application of Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) for Diagnosing Chili Leaf Spot Disease Yudo Devianto; Saruni Dwiasnati; Bambang Sukowo; Ahmad Fauzi; Kiki Ahmad Baihaqi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 2 (2023): MALCOM October 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i2.850

Abstract

Produktivitas  tanaman  cabai  bergantung  kepada  iklim,  lingkungan,  serta hama  dan  penyakit. Petani yang baru dalam budidaya cabai merah menghadapi beberapa kesulitan karena memiliki sedikit pengalaman dalam budidaya, sehingga sulit untuk mengidentifikasi jenis penyakit dan hama yang menyerang. Hal ini menyebabkan penurunan produktivitas. Selain itu, petani juga belum memiliki pengalaman dalam menangani masalah yang timbul pada tanaman yang mereka budidayakan. Dalam rangka membantu petani mengatasi masalah ini, SPK berbasis web telah dikembangkan. Sistem ini menggunakan metode Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Kriteria yang digunakan dalam metode ini adalah daun mudah mengkerut dengan warna mosaic kekuningan, daun mengkerut hingga menjadi ukuran kecil dan lebih tebal, bercak bulat berwarna coklat pada daun yang mengering, terdapat lubang pada bercak tua, dan pucuk daun yang berubah menjadi kuning jelas. Alternatif yang dipertimbangkan dalam penelitian ini  Daun Cabai " Penyakit Layu Bakteri ", Daun Cabai " Layu Pusertium ", Daun Cabai " Penyakit Virus Kuning ", dan Daun Cabai “Penyakit Bercak Daun”. Perhitungan dengan metode TOPSIS, Daun Cabai " Penyakit Virus Kuning" mendapatkan peringkat dengan nilai preferensi sebesar 2.0118. Penelitian ini disimpulkan bahwa metode TOPSIS dapat digunakan untuk mengetahui daun cabai dengan kriteria apa yang terbaik berdasarkan kriteria
PEMANFAATAN TEKNOLOGI UNTUK MENDUKUNG PEMBELAJARAN SANTRI PADA PONDOK PESANTREN Kiki Ahmad Baihaqi; Ahmad Fauzi; Jamaludin Indra
Jurnal Pengabdian Masyarakat Nasional Vol 3, No 2 (2023)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/pemanas.v3i2.24777

Abstract

Technology has penetrated all fields, the technology in question is learning media and learning support applications. Especially in the world of Islamic boarding schools, which is religion-based education, so it balances religious education and technological education. With the pandemic, everything in education has changed, namely, what was previously only conventional and face-to-face-based, education that can be done in any condition that breaks the barriers of time and space. So training is needed to optimize the use of online-based learning support media. The training results from 30 out of 35 people successfully completed the training stages and the remaining 5 passed with improvements.
Detection of Rice Leaf Pests Based on Images with Convolution Neural Network in Yollo v8 Fauzi, Ahmad; Baihaqi, Kiki Ahmad; Pertiwi, Anggun; Devianto, Yudo; Dwiasnati, Saruni
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.2008

Abstract

Detection of rice leaf pests is important in agriculture because it can help farmers determine appropriate preventive measures. One method that can be used to detect rice leaf pests is digital image processing technology. In this research, proof of suitability for solving this case was carried out between the Convolutional Neural Network (CNN) algorithm which was run offline with R-CNN and YOLOv8 for detecting rice leaf pests. At the data preparation stage, images of rice leaves were taken from various sources with a total of 100 images taken from website data and 10 images taken from the research site. Next, preprocessing and data augmentation are carried out to improve image quality and increase data variation. At the model training stage, a training and evaluation process is carried out using two types of algorithms, namely R-CNN and YOLOv8. The accuracy of the testing results using the same data using Yolov8 obtained 87.0% accuracy and 79% precision, while using R-CNN the results obtained were 85% for accuracy and 75% for precision with data divided into 80 training data 20 validation data and 10 testing data. Labeling the dataset uses Makesensei which has been completely standardized, with the resulting parameters being the spots on rice leaves.
Perbandingan Kinerja Klasifikasi Penyakit Ginjal Menggunakan Algoritma Support Vector Machine (SVM) dan Decision Tree (DT) Madani, Puja Milenia Sriwildan; Rohana, Tatang; Baihaqi, Kiki Ahmad; Fauzi, Ahmad
Building of Informatics, Technology and Science (BITS) Vol 6 No 1 (2024): June 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i1.5206

Abstract

Chronic Kidney Disease is one of the deadliest diseases. In the early stages, the disease may go undetected, so patients tend to take it lightly, however, the disease can progress little by little and become serious without being detected. This can lead to complications of other diseases and can cause permanent damage to the kidney organs. Therefore, this study aims to classify individuals who are at risk of having Chronic Kidney Disease which can help medical personnel in an effort to reduce the number of people with the disease. This study uses Chronic Kidney Disease data obtained from the UCI Repository web. The data has 25 attributes with 400 rows. This research compares the Support Vector Machine and Decision Tree algorithms and uses the Confusion Matrix evaluation method. The results showed that the Support Vector Machine algorithm has superior accuracy, precision, recall, and f1-score results compared to the Decision Tree algorithm. The accuracy of the Support Vector Machine algorithm is 97.5, precision is 0.98, recall is 0.96, and f1-score is 0.97. While the Decision Tree algorithm obtained accuracy of 92.5, precision of 0.92, recall of 0.90, and f1-score of 0.91. with these results, this research can be continued into an application that can classify individuals at risk of Chronic Kidney Disease
Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital Menggunakan Algoritma Logistic Regression dan K-Nearest Neighbor Setiawan, Bagus; Baihaqi, Kiki Ahmad; Nurlaelasari, Euis; Handayani, Hanny Hikmayanti
Building of Informatics, Technology and Science (BITS) Vol 6 No 1 (2024): June 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i1.5389

Abstract

The government has launched the latest innovation in data collection in the realm of population data which relies on digital technology through mobile applications using photos or QR codes which aims to reduce the use of physical prints of identity cards and the availability of blank KTPs with the aim of simplifying the administrative process and no longer requiring population documents. printing or saving in physical format such as an KTP file. In implementing the population identity application, some people feel anxious due to limited internet access, lack of knowledge about the application, as well as concerns about the security and privacy of identity data in digital format. This research aims to conduct sentiment analysis on reviews of digital population identity applications by comparing logistic regression and k-nearest neighbor algorithms. The dataset was taken using the Google Play Scraper library in Python which got 1700 raw data taken from 12-February to 26 March 2024 and then pre-processed and got 1108 clean data. The results of this research show that the comparison between the logistic regression algorithm and k-nearest neighbor algorithm shows that the k-nearest neighbor algorithm is better than the logistic regression algorithm with an accuracy result of 80.43%, a difference of 3.60% compared to k-nearest neighbor. So it can be concluded that the digital population identity application is still considered poor in its use because it has a negative sentiment of 73.9% and it can be seen in this research that the comparison results of the k-nearest neighbor algorithm prove that its performance is better than logistic regression
Analisis Kinerja Algoritma Decision Tree Dan Random Forest Dalam Klasifikasi Penyakit Kardiovaskular Utami, Nisa; Baihaqi, Kiki Ahmad; Awal, Elsa Elvira; Waiddin, Deden
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5722

Abstract

Cardiovascular disease is a disease with a fairly high number of deaths. In Indonesia, the term cardiovascular is more popular with heart disease, which is a condition that can cause narrowing and blockage of blood vessels. Cardiovascular disease has two risks, the first is a risk that can be changed, such as stress, increased blood pressure, unhealthy diet, increased glucose levels, abnormal cholesterol and lack of physical activity. Meanwhile, risks that cannot be changed include family disease, gender, age and obesity. In this research, we can examine and analyze the performance of the two best classification algorithms, namely the decision tree algorithm and the random forest algorithm, in classifying cardiovascular disease based on the cause of the disease. The aspects studied are the performance results of each algorithm and evaluated using Area Under the Curve (AUC), classification report, k-Fold Cross Validation and Confusion matrix. The dataset used was taken from the Kaggle website with the data used being Cardiovascular Disease data which consists of 68.205 rows (patient data) and 17 attributes. . Based on the evaluation results using the Area Under The Curve (AUC) value, the highest result was obtained at 0.761 by the Random Forest algorithm with balanced data conditions with Random oversampling. Meanwhile, the lowest AUC value was obtained by the Decision Tree algorithm with unbalanced data of 0.592. Based on these results, it is known that the Random Forest algorithm with a balanced data scheme is a better algorithm, with a balanced data scenario using SMOTE and Random Oversampling techniques.
Pemilihan Algoritma Terbaik Untuk Klasifikasi Jenis E-Mail dengan Metode TF-IDF Fitria, Denisa; Cahyana, Yana; Sulistya, Dwi; Baihaqi, Kiki Ahmad
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 9, No 1 (2024): Edisi Februari
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v9i1.747

Abstract

Spam emails, sent en masse to numerous addresses, are a major annoyance. To combat this, effective filters are necessary, such as classification to separate spam from non-spam. This can be achieved through an anti-spam model utilizing text mining like TF-IDF. Using the KDD process, a study analyzed a dataset of 6046 entries, split 77.2% non-spam and 22.8% spam. Logistic Regression showed the best accuracy at 98%, outperforming Decision Tree (59%) and Support Vector Machine (95%). Thus, Logistic Regression emerged as the optimal algorithm for email classification.