p-Index From 2020 - 2025
8.152
P-Index
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Journal of Software Engineering, Information and Communication Technology

Segmentation of Credit Card Customers Based on Their Credit Card Usage Behavior using The K-Means Algorithm Ichwanul Muslim Karo Karo
Journal of Software Engineering, Information and Communication Technology (SEICT) Vol 2, No 2: December 2021
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.15 KB) | DOI: 10.17509/seict.v2i2.40220

Abstract

The intensity of credit card customers in making transactions has increased in the last 10 years in Indonesia. This is both a challenge and an opportunity for the Bank. Customer segmentation information is beneficial to reduce bad debts or increasing customer credit card limit capacity. This study aims to segment credit card customers based on their usage behavior with a clustering approach using the K-means algorithm. While the process of evaluating segmentation results using the silhouette index. Based on the experimental results, six groups are the best number of clusters. The six groups are shopping hobbies, payment process at maturity, payment by installments, withdrawing cash, buying expensive goods, and types that rarely use credit cards.
Prediksi Penyebaran Demam Berdarah Dangue dengan Algoritma Hybrid Autoregressive Integrated Moving Average dan Artificial Neural Network: Studi Kasus di Kabupaten Bandung Ichwanul Muslim Karo Karo
Journal of Software Engineering, Information and Communication Technology (SEICT) Vol 2, No 1: June 2021
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.034 KB) | DOI: 10.17509/seict.v2i2.40222

Abstract

Demam Berdarah Dengue (DBD) merupakan penyakit menular yang ditularkan melalui gigitan nyamuk Aedes Aegypti. WHO (World Health Organization) telah mengupayakan langkah-langkah pencegahan terhadap wabah DBD dengan penerapan teknologi. Teknologi yang digunakan untuk mencegah penyebaran wabah DBD adalah penggunaan serangkaian proses komputasi untuk menghasilkan prediksi penyebaran DBD yang diharapkan dapat membantu langkah pencegahan. Dalam membantu pengembangan teknologi pencegahan DBD penulis mengembangkan model hybrid Autoregressive Integrated Moving Average (ARIMA) dan Artificial Neural Network (ANN) untuk membantu memprediksi incident rate DBD berdasarkan beberapa variabel terkait seperti cuaca dan incident rate yang diambil dari Januari 2009 – November 2016. Dari model hybrid ARIMA dan ANN dihasilkan nilai prediksi yang memiliki tingkat error yang rendah yang diindikasikan oleh nilai RMSE yang kecil. Model hybrid ARIMA-ANN yang optimal adalah hybrid ARIMA-ANN dengan orde (1,0,3) dengan nilai RMSE sebesar 0.0087
Implementasi Metode XGBoost dan Feature Important untuk Klasifikasi pada Kebakaran Hutan dan Lahan Ichwanul Muslim Karo Karo
Journal of Software Engineering, Information and Communication Technology (SEICT) Vol 1, No 1: December 2020
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1009.837 KB) | DOI: 10.17509/seict.v1i1.29347

Abstract

Kebakaran hutan dan lahan di Indonesia telah menjadi masalah krisis lingkungan tahunan. Sebaran kebakaran hutan terbesar terjadi dipulau Sumatera. Salah satu upaya tindakan dalam pencegahan dan meminimalisasikan resiko kebakaran hutan adalah dengan mengklasifikasikan jenis titik panas di lahan, sehingga di dapat skala prioritas dalam pemadaman titik api. Penelitian ini bertujuan mengklasifikasikan type titik panas dengan metode XGBoost dan feature importance yang terdapat di pulau Sumatera. Data titik panas diperoleh dari Globalforestwatch.com. Proses mengurangi variabel dari data yang diperoleh menghasil dampak yang sangat signifikan pada model klasifikasi. Terapat enam dan atau tujuh variabel yang sangat berpengaruh dalam menentukan titik panas, variabel tersebut jugalah yang menghasilkan model klasfikasi terbaik. XGBoost dan feature importance menghasilkan akurasi sebesar 89.52%. Sensitivity (SE), Specificity (SP), dan Matthews Correlation Coefficient (MCC).secara berturut turut 91.32 %, 93.16 % dan 92.75 %. Metode ini juga lebih baik dibandingkan dengan hasil penelitian sebelumnya.
Wildfires Classification Using Feature Selection with K-NN, Naïve Bayes, and ID3 Algorithms Ichwanul Muslim Karo Karo; Sisti Nadia Amalia; Dian Septiana
Journal of Software Engineering, Information and Communication Technology (SEICT) Vol 3, No 1: June 2022
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/seict.v3i1.47537

Abstract

Wildfires are a problem with a high intensity of occurrence and recurrence in Indonesia. If this problem is not properly addressed, it will threaten air circulation in the world. The source of fire can be natural or man-made. As a preventive measure for the widespread spread of fire, it is necessary to investigate the type of fire early on so that it can be determined the type of fire with the highest priority to be extinguished immediately. The process of identifying fire types can be done by classification. This research aims to classify the type of fire with three algorithms, namely K-Nearest Neighbour (K-NN), Naïve Bayes and Iterative Dichotomise 3 (ID3). The forest fire dataset was obtained from the Global Forest Watch (GFW) platform. Before entering the classification stage, the dataset went through a feature selection process, where attributes meeting the threshold were selected for the classification process. The performance of ID3 algorithm is superior compared to other algorithms with an accuracy of 65.83, precision 67.4, recall 67.02 and F1 67.21 per cent. Finally, the feature selection process contributes positively to the classification process, increasing the model performance by 2-5 per cent.
Determination of Mango Fruit Maturity on the Tree Based on Digital Image Processing and Artificial Neural Networks Aditia Sanjaya; Ichwanul Muslim Karo Karo
Journal of Software Engineering, Information and Communication Technology (SEICT) Vol 4, No 1: June 2023
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/seict.v4i1.52916

Abstract

Until now, humans have determined the ripeness of mangoes on the tree by hand. Losses are caused by the insecurity of the human state and a misunderstanding of the maturity level of mangoes. In the future, a system that can detect the ripeness of mangoes on the tree will be required. This research provides a preliminary examination of the technology's implementation. The study created a computerized image processing method for determining the ripeness of mangoes on the tree. The neural network backpropagation algorithm was employed in this investigation. The feature extraction model employed in the image is a hybrid of the RBG and HSV models. The best accuracy level is 72%, with an 80:20 ratio of test data to training data. 
Co-Authors Abil Mansyur, Abil Adawiah Hasyani, Rabiahtul Ade Amelia, Tasya Adidtya Perdana, Adidtya Aditia Sanjaya Ahyar, Khoirul Ananda Khosuri Angelina Prima Kurniati Anggraini, Nisa Putri Aqila Aqila, Aqila Azizul Azhar Ramli Azizul Azhar Ramli Bachruddin Saleh Luturlean Bakti Dwi Waluyo Darari, Muhammad Badzlan Daulay, Leni Karmila Dedy Kiswanto Dian Septiana Dimas Pebrian Supandi Esra Kristiani Sihite Ester Berliana Ritonga, Yolanda Eviyona Laurenta Br Barus Fadillah, Wahyu Nur Falah, Miftahul Fitri Rahayu Fitria, Nur Anisa Gea, Kurnia Mildawati Ginting, Manan Gunawan, Rizky Habibi, Rizki Haraha, Melyana Hariyanto HARIYANTO HARIYANTO Hariyanto Hariyanto Hariyanto, Hariyanto Hendriyana Hendriyana Heru Nugroho Husna Batubara, Shabrina Ida Ayu Putu Sri Widnyani Jodi Kusuma Juan Steiven Imanuel Septory Justaman Arifin Karo Karo Karo karo, Justaman Arifin Karo Karo, Justaman Arifin Landong, Ahmad Lorinez S, Yohana Manan Ginting Mardiana Mardiana Maretha Br. Simbolon, Silvana Maulana Malik Fajri Maulidna, Maulidna Melania Justice Panggabean Miftahul Falah Miftahul Falah Mohd Farhan Md Fudzee Mohd Farhan Md Fudzee Molliq Rangkuti, Yulita Mufida, Yasmin Muhammad Yusuf Mutiara Sihaloho, Laura Adelia Nasution, Aurela Khoiri Natasya, Amanda Nelza, Novia Nur Hafni Nurul Ain Farhana Nurul Ikhsan Panggabean, Suvriadi Permata Putri Pasaribu, Yohanna Purba, Desni Paramitha Putri Harliana Putri Maulidina Fadilah Ramadhani, Fanny Ramanti Dharayani Rangkuti, Y. M Reinaldo Kenneth Darmawan Rennyta Yusiana Retno Setyorini Roby Dwi Hartanto Rohmat Saragih Romia Romia Said . Iskandar Salsabila, Aqila Shahreen Kasim Shahreen Kasim Simamora, Elmanani Sisti Nadia Amalia Sri Dewi Sri Dewi Sri Dewi Sri Dewi Sri Suryani Supra Yogi Syahrin , Alvin Valentino, Bob Wahyu Nur Fadillah Wardhani Muhamad Warjaya, Angga Wibowo, Adinda Widi Astuti Winsyahputra Ritonga Yahya Peranginangin Yulita Molliq Rangkuti Yulita Molliq Rangkuti Yulita Molliq Rangkuti Yulita Molliq Rangkuti Yunianto Yunianto Yunianto Yunianto Yunianto Yunianto, Yunianto ZK Abdurahman Baizal