Claim Missing Document
Check
Articles

Biplot and Procrustes Analysis of Poverty Indicators By Province in Indonesia in 2015 dan 2019 Ade Eriyen Saputri; Admi Salma; Nonong Amalita; Dony Permana
UNP Journal of Statistics and Data Science Vol. 2 No. 1 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss1/124

Abstract

Poverty is one of the country's problems that the government should  overcome. Poverty is influenced by several indicators. The success of a government can be seen from changes in poverty. This study compares the percentage of Indonesia's poverty indicators at the beginning of office (2015) and the end of office (2019) of one government period. The indicators that most affect the poverty rate in 2015 and 2019 are seen using biplot analysis while to measure the similarity and the magnitude of the percentage change in poverty from 2015 to 2019 can use procrustes analysis. The results of the biplot analysis show households that have access to decent and sustainable sanitation services as the indicator with the highest diversity in 2015 while in 2019 it is the percentage of youth  (aged 15-24 years) not in education, employment or training and households that have access to decent and sustainable drinking water services. Kepulauan Riau, DKI Jakarta, DI Yogyakarta, and Bali are the provinces that have the highest values in almost all poverty indicators except the indicator of the percentage of youth  (aged 15-24 years) not in education, employment or training. The results of the procrustean analysis show an increase of 9.7% in Indonesia's poverty indicators in 2019 compared to 2015. So it can be said that the two configurations are very similar.
Fuzzy K-Nearest Neighbor to Predict Rainfall in Padang Pariaman District Rizki Amalia, Annisa; Nonong Amalita; Yenni Kurniawati; Zamahsary Martha
UNP Journal of Statistics and Data Science Vol. 2 No. 1 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss1/126

Abstract

Information about rainfall levels at a time and in a region is very important because rainfall influences human activities. Rainfall is the amount of water that falls to the earth in a certain period of time, measured in millimeters. One piece of information related to rainfall is daily rainfall predictions. In this study, an attempt was made to classify daily rainfall at the Padang Pariaman climatology station into 5 categories, namely very light rain, light rain, moderate rain, heavy rain and very heavy rain. There are 4 weather parameters used, namely air temperature, humidity, wind speed and duration of sunlight. One of the methods used to predict rainfall is data mining, a computer learning to analyze data automatically thus obtaining a perfect new model. One of the best prediction algorithms in data mining is Fuzzy K-Nearest Neighbor (FK-NN). FK-NN uses the largest membership degree value of the test data in each class to predict the class. The number of sample classes for rainfall data in Padang Pariaman Regency has an imbalance class. To overcome the imbalance class, Synthetic Minority Over-sampling Technique (SMOTE) method is used to generate minority data as much as majority data. The results of this study by using FK-NN classification with 343 test data, parameters K = 12, and euclidean distance is quite good at the accuracy level of 76,38%..
Penerapan Algoritma Naive Bayes untuk Klasifikasi Demam Berdarah Dengue di RSUD dr. Achmad Darwis Viola Yuniza; Atus Amadi Putra; Nonong Amalita; Fadhilah Fitri
UNP Journal of Statistics and Data Science Vol. 2 No. 1 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss1/128

Abstract

  Dengue fever is a disease transmitted by the bite of the Aedes aegypti mosquito. Central Agency of Statistic of Lima Puluh Kota District reported that the morbidity rate of this disease was 14.40% per 100,000 population, which was higher than the previous year's morbidity rate of 3.30% per 100,000 population. The main symptoms of this disease are fever lasting 2-7 days, muscle and joint pain with or without rash, dizziness, and even vomiting blood. Dengue infection can cause various clinical symptoms ranging from dengue fever, dengue hemorrhagic fever to dengue shock syndrome. Therefore, a classification method is needed to help and facilitate early diagnosis of this disease. The method used is the Naive Bayes algorithm by classifying the positive and negative patients with dengue fever. The purpose of this research is to determine the classification of patients with dengue fever disease and the accuracy of using the Naive Bayes algorithm. The results of the analysis stated that the Naïve Bayes model successfully classified patients into 12  Dengue fever positive patients and 22  Dengue fever negative patients based on 34 testing data. The accuracy of the model is 91,18%, which shows that the model is very good  in classifying Dengue fever patients.
Forecasting Gold Prices in Indonesia using Support Vector Regression with the Grid Search Algorithm Syahfitrri, Nindi; Nonong Amalita; Dodi Vionanda; Zamahsary Martha
UNP Journal of Statistics and Data Science Vol. 2 No. 1 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss1/145

Abstract

Investment is an effort to increase economic growth in Indonesia.  A popular investment in the community is gold investment.  The value of gold investments tends to increase but is not immune from price fluctuations, therefore it is important to forecast the price of gold in Indonesia. The method that can be used to make this forecast is Support Vector Regression (SVR).  SVR is a method that looks for a function that has a deviation of no more than ε to get the target value from all training data. The best SVR model with a linear kernel was obtained from a combination of parameters C=0,0625 and ε=0,001 with a RMSE value of 0,19734 and a value of 0,974112.  So, the SVR method is appropriate to use for forecasting gold prices in Indonesia.
Comparison of K-Means and Fuzzy C-Means Algorithms for Clustering Based on Happiness Index Components Across Provinces in Indonesia Inna Auliya; Fitri, Fadhilah; Nonong Amalita; Tessy Octavia Mukhti
UNP Journal of Statistics and Data Science Vol. 2 No. 1 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss1/150

Abstract

Cluster analysis is a statistical technique used to group objects based on their shared characteristics. This research aims to assess how 34 provinces in Indonesia are clustered using happiness index indicators for the year 2021. The study compares two non-hierarchical cluster analysis methods, K-Means and Fuzzy C-Means. K-Means categorizes objects into clusters based on their proximity to the nearest cluster center, while Fuzzy C-Means employs a fuzzy grouping model assigning membership degrees from 0 to 1. The results indicate that both methods form three clusters. Evaluating standard deviation values and ratios, Fuzzy C-Means proves superior, displaying a larger standard deviation between groups and a smaller ratio (0.6680004) compared to K-Means. Consequently, the study concludes that the Fuzzy C-Means method is more optimal than K-Means.
Classification of Unemployment at West Sumatra Province in 2021 using Algorithm Classification and Regression Tree Nur Fadillah, Nur; Syafriandi Syafriandi; Nonong Amalita; Dony Permana
UNP Journal of Statistics and Data Science Vol. 2 No. 2 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss2/166

Abstract

Unemployment is a problem that often occurs in developing countries. This is caused by the imbalance between the number of labor force and the number of working population. According to the Central Bureau of Statistics, West Sumatra Province in 2021 is the eighth province with a high open unemployment rate of 6,52%, which is higher than the average Indonesian open unemployment rate of 6,49%. The increase in unemployment has occurred from 2017 to 2021 which is caused by educated unemployment. This is due to the habit of job seekers who tend to pick and choose the types of jobs available, while business needs are very limited. The problem of unemployment will get higher if it is not resolved. As a result, unemployment can lead to poverty and other social problems. In this study, CART analysis is used to classify unemployment in West Sumatra Province in 2021 which aims to determine the factors that affect unemployment. CART is a decision tree that shows the relationship between the response variable and one or more predictor variables. The purpose of CART analysis is to obtain the right data group for classification purposes. Based on the analysis obtained, the variables that affect unemployment in West Sumatra Province in 2021 are marital status, gender, household status, education level, age, and place of residence with an accuracy value of 71,73%.
Pemetaan Intensitas Gempa Bumi di Wilayah Sumatera Barat Menggunakan Model Epidemic Type Aftershock Sequence Spatio-Temporal Fikra, Hidayatul; Fitria, Dina; Nonong Amalita; Tessy Octavia Mukhti
UNP Journal of Statistics and Data Science Vol. 2 No. 2 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss2/171

Abstract

The random spatial and temporal occurrence of earthquakes means that this are still being researched from a seismological and stochastic perspective. Point processes are examples of stochastic processes which explain seismic activity, one of them is Epidemic Type Aftershock Sequence (ETAS) model. It lackness ignores the location or spatial component of. Consequently, the components of time, location, and magnitude will be taken into consideration when discussing the ETAS model in this study. The spatio-temporal model is the name given to this concept. Therefore, in this research,mapping of earthquake intensity will be carried out in the West Sumatra region using the spatio-temporal ETAS model stated in conditional intensity function with eight parameters. The data used are earthquake events in the West Sumatra region with a magnitude threshold of 4 SR and a depth of ≤ 70 km for the period January 2000 to January 2024. Parameter model estimated using the maximum likelihood method and solved using the Davidon Fletcher Powell algorithm. The result shows area of West Sumatra with high earthquake intensity is coastal area, namely West Pasaman, Padang, Mentawai Islands and the South Pesisir. This makes the area vulnerable to seismic disasters
Random Forest Implementation for Air Pollution Standard Index Classification in DKI Jakarta 2022 Hasna, Hanifa; Nonong Amalita; Dony Permana; Admi Salma
UNP Journal of Statistics and Data Science Vol. 2 No. 2 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss2/173

Abstract

Air pollution is a serious challenge in various cities, including DKI Jakarta. Based on measurements of the Air Pollution Standard Index carried out by the DKI Jakarta Environmental Service, the air quality in DKI Jakarta is considered moderate to unhealthy. Deteriorating air quality in the Jakarta metropolitan area is very dangerous for humans and living things. Therefore, to prevent the problem, the classification of air quality based on pollutant content is carried out using Random Forest (RF). The application of RF will form several trees that can provide better predictions and are able to produce low errors. The result of this study obtained optimal tree formation, namely tree formation using a combination of mtry (any input variables randomly selected in one sorting node)=2 and ntree (number of trees in the forest) as many as 5000 trees. The resulting accuracy was 99.17% with an OOB error rate of 0.83%. This research identifies that particulate pollutants are the main factor causing air pollution in DKI Jakarta. Based on these results, it shows that RF is able to provide accurate predictions about the level of air pollution in DKI Jakarta and can be identify important factors that affect air pollution.
Comparison of Estimate Method of Moment and Least Trimmed Squares in Models Robust Regression Tri Wahyuni Nurmulyati; Dony Permana; Nonong Amalita; Martha, Zamahsary
UNP Journal of Statistics and Data Science Vol. 2 No. 2 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss2/176

Abstract

The poverty line is the minimum income that a person must earn to be considered to have a decent standard of living in a particular area. In 2022, the poverty line in West Sumatra Province was higher than the poverty line in Indonesia as a whole. An analysis was conducted to identify the factors influencing the poverty line in West Sumatra Province. However, the observational data on the poverty line and its influencing factors contained outlier. Therefore, robust regression analysis was performed to address the data containing outlier, comparing two estimates: MM estimation and LTS estimation. By examining the value, the best estimate was found to be MM estimation, with significant factors being average net wages/salaries, TPT, APM, and AMH. If the average net wages/salaries, TPT, APM, and AMH increase, the poverty line in West Sumatra will rise. With an of 0.9582, the model can explain 95.82% of the variation in the poverty line, while the remaining variation is explained by other factors not included in the model.
Markov Chain Model Application for Rainfall Pattern in Padang City haniyathul husna; Dony Permana; Nonong Amalita; Fadhilah Fitri
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/179

Abstract

Rainfall is a natural phenomenon that includes climate variables and is observed every time in every place. Daily rainfall data is a time series data, which is random. It is a data transfer from one time to another which can be expressed as a state of light, medium, heavy or very heavy rainfall intensity. Rainfall prediction is needed for people's lives and supports the economy. In addition, rainfall prediction is an anticipation of prevention if high rain intensity will occur in a long time. One of the rainfall prediction methods that can be used is the stochastic process approach. Markov chain is part of the stochastic process that can be used for prediction of rainfall at the present time based on one previous time. The focus of this research is the application of Markov Chains for rainfall prediction. Through Markov chains, long-term opportunities for rainfall phenomena are obtained. This study will look at the rainfall pattern of Padang City using Markov chains and also to predict rainfall in Padang City. The results of predicting the weather conditions of Padang City with any rainfall conditions today are 36.9% for the chance of no rain tomorrow, 46% for the chance of light rain tomorrow, 10% for the chance of moderate rain tomorrow, 5.3% for the chance of heavy rain tomorrow, and 1.8% for the chance of very heavy rain tomorrow.The results of this study are expected to be a recommendation for parties directly involved in taking preventive measures due to rainfall.
Co-Authors Addini, Vidhiya Ade Eriyen Saputri Adinda Dwi Putri Admi Salma Aldwi Riandhoko Ali Asmar Amanda, Abilya Amelia Fadila Rahman Andini Yulianti Anggi Adrian Danis Anjelisni, Nining april leniati Arnellis Arnellis Atika Ahmad Atus Amadi Putra Azwar Ananda Chairina Wirdiastuti Cindy Febrianita Denia Putri Fajrina Dewi Febiyanti Dewi Murni Dina Fitria Dina Fitria Dina Fitria, Dina Dodi Vionanda Dony Permana Dwi Sulistiowati Edwin Musdi Elita Zusti Jamaan Elsa Oktaviani Fadhilah Fitri Fajrin Putra Hanifi fajriyanti nur, Putri Fatma Yulia Sari Faulina FAZHIRA ANISHA Fikra, Hidayatul Fitri, Fadhilah Gezi Fajri Ghaly, Fayyadh Hamida, Zilfa Hana Rahma Trifanni haniyathul husna Hasna, Hanifa Helma Helma Helma Helma Herlena Purnama Sari Huriati Khaira Ichlas Djuazva Inna Auliya Jihe Chen Juwita Juwita Khairani, Putri Rahmatun Lilis Sulistiawati Media Rosha Media Rosha Meira Parma Dewi Melly Kurniawati Miftahurrahmi, Syifa Minora Longgom Mohammad Reza febrino Mudjiran Mudjiran Muhammad Tibri Syofyan Mukhti, Tessy Octavia nabillah putri Nadha Ovella Syaqhasdy Natasya Dwi Ovalingga, natasyalinggaa Nini Erdiani Nur Fadillah, Nur Nurhizrah Gistituati Okia Dinda Kelana Oktaviani, Bernadita Permana, Dony Prida Nova Sari Puti Utari Maharani Rahma, Dzakyyah Resti Febrina Retsya Lapiza Rizki Amalia, Annisa Rizqia Salsabila Rusdinal Rusdinal Saddam Al Aziz Safitri, Melda Salma, Admi Seif Adil El-Muslih Shavira Asysyifa S Sondriva, Wilia Sujantri Wahyuni Suparman Suparman Swithania Rizka Putri Syafriandi Syafriandi Syafriandi Syafriandi Syafriandi Syahfitrri, Nindi Tamur, Maximus Tessy Octavia Mukhti Tri Wahyuni Nurmulyati Venny Oktarinda Viola Yuniza Wella Saputri Wulan Septya Zulmawati Yarman Yarman, Yarman Yenni Kurniawati Yulia Pertiwi Zamahsary Martha Zilla Zalila Zilrahmi, Zilrahmi