Articles
Chatbot Telegram Menggunakan Natural Language Processing
Mhd Furqan;
Sriani Sriani;
Muhammad Naufal Shidqi
Walisongo Journal of Information Technology Vol 5, No 1 (2023)
Publisher : Universitas Islam Negeri Walisongo Semarang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21580/wjit.2023.5.1.14793
Media sosial dapat membantu dalam kehidupan sehari-hari untuk berkomunikasi dan mengobrol tanpa batas jarak. Poltekpar memiliki website yang menyediakan informasi tentang tes masuk universitas dan Frequently Ask Question (FAQ) yang bertujuan membantu mahasiswa baru menemukan informasi terkait pendaftaran di Poltekpar. Untuk meningkatkan pelayanan publik, Poltekpar harus memberikan pelayanan yang terbaik pada calon mahasiswa. Pelayanan yang sebelumnya menggunakan FAQ memiliki kendala tidak dapat menjawab secara cepat, sehingga dinilai kurang efisien, maka akan lebih mudah dengan adanya Chatbot yang dapat menjawab pertanyaan secara realtime. Metode penelitian yang digunakan merupakan System Development Life Cycle (SDLC) Waterfall yang memiliki empat tahap yaitu analysis, design, coding dan testing dan menggunakan teknik pengujian aplikasi User Acceptance Testing (UAT). Dalam penelitian ini melakukan proses pembuatan sistem dengan menggunakan metode Natural Language Processing (NLP) yang diterapkan pada sistem yang dibangun dengan Telegram Messenger dan bahasa pemrograman Python. Hasil Chatbot yang diuji mendapat nilai persentase sebesar 94%. Hasil ini menunjukkan sistem Chatbot sangat layak dan efektif dalam membantu mahasiswa memperoleh informasi yang dibutuhkan.
Perbandingan Algoritma Contraharmonic Mean Filter dan Arithmetic Mean Filter untuk Mereduksi Exponential Noise
Mhd Furqan;
Sriani Sriani;
Yuli Kartika Siregar
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 5 No. 2 (2020): September 2020
Publisher : UIN Sunan Kalijaga Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (501.948 KB)
|
DOI: 10.14421/jiska.2020.52-05
Noise in the image caused a decrease in image quality, so that the image will look dirty and spots appear on the resulting image. Noise also results in reduced information on the resulting image so that noise limits valuable information when image analysis is performed. Filtering technique is one way to overcome noise. The filtering technique used in this study is using the Contraharmonic Mean Filter algorithm and the Arithmetic Mean Filter algorithm with the type of noise used to reduce the Exponential Noise. The results of the two algorithms show that the Arithmetic Mean Filter algorithm is a better algorithm to reduce the Exponential Noise compared to the Contraharmonic Mean Filter algorithm which is proven based on the value of MSE (Mean Square Error) and PSNR (Peak Signal-to-Noise Ratio).
PENGENALAN POLA PENYAKIT DAUN JAMBU AIR MENGGUNAKAN METODE PCA DAN KNN
Sriani Sriani;
Supiyandi Supiyandi;
Mhd Furqan;
Wan Fadilla Rischa
JSR : Jaringan Sistem Informasi Robotik Vol 7, No 2 (2023): JSR: Jaringan Sistem Informasi Robotik
Publisher : AMIK Mitra Gama
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.58486/jsr.v7i2.273
Salah satu faktor penghambat dalam upaya peningkatan produksi tanaman seperti jambu air adalah penyakit tanaman yang dapat merusak seluruh bagian tanaman. Salah satu cara memperhatikan produksi tanaman jambu air adalah dengan mengklasifikasikan penyakit jambu air. Klasifikasi dapat diamati atau dilihat dari tekstur daun jambu air untuk membedakan ciri daun dari masing-masing jenis penyakit jambu air, dikarenakan daun merupakan suatu bentuk benda yang memiliki sifat tertentu dan ciri yang lengkap. Tujuan dari penelitian ini adalah untuk membuat sistem yang akan mengklasifikasikan penyakit daun jambu air dan dapat memudahkan dalam memahami jenis penyakit yang menyerang daun jambu air. Penelitian ini menggunakan 66 citra daun dengan tiga jenis penyakit. Dalam penelitian ini, metode yang digunakan adalah Principal Component Analysis (PCA) dan K-Nearest Neighbor (KNN). Ekstraksi ciri meliputi PCA untuk mengubah setiap citra menjadi data matriks untuk memperoleh nilai ciri daun. Sedangkan dalam mengklasifikasikan penyakit daun jambu air menggunakan KNN, dengan menghitung kesamaan menggunakan jarak Euclidean. Hasil penelitian menunjukkan bahwa metode PCA dan KNN dapat mengklasifikasikan penyakit daun jambu air dengan nilai akurasi sebesar 90,4762% dengan nilai ketetanggaan K=1 dan K=3 akurasi sebesar 85,7143% menggunakan 45 citra latih dan 21 citra uji. Dengan demikian semakin banyak nilai ketetanggaan yang di gunakan semakin rendah nilai akurasi yang didapatkan.
Sistem Pakar Diagnosis Penyakit Pernafasan Pada Manusia dengan Metode Forward Chaining
Mhd Furqan;
Abdul Halim Hasugian;
Tria Elisa
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 4, No 1 (2023): Edisi Januari
Publisher : LPPM STIKOM Tunas Bangsa
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30645/kesatria.v4i1.114
Respiratory disease is an infectious disorder that often occurs compared to other diseases. Due to the lack of handling and people who take it lightly with the symptoms caused by respiratory diseases in humans, causing the disease to get worse. The purpose and intent of this research is to facilitate and help the public to diagnose respiratory diseases efficiently and effectively. Seeing the problem occurs, a web-based application is made to overcome it. This expert system has analyzed data consisting of 6 diseases, namely tuberculosis, bronchitis, pneumonia, pleurisy, tonsillitis, and asthma. So that there are 40 disease symptom data that form a symptom rule and form the right diagnosis results. This web-based expert system for diagnosing respiratory diseases in humans is used with the forward chaining method. So the result of this research is an application or web-based expert system for diagnosing respiratory diseases in humans.
PENGAMANAN DATA TEKS MENGGUNAKAN METODE DIGITAL SIGNATURE ALGORITHM (DSA) DAN ADVANCED ENCRYPTION STANDARD (AES)
Mhd Reza Alfani;
Mhd Furqan;
Yusuf Ramadhan Nasution
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 7, No 1 (2024): February 2024
Publisher : Smart Education
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.54314/jssr.v7i1.1686
Abstract: The issue of data security and confidentiality are two important aspects of an information system. This is closely related to how important the information is sent and received by interested people. Cryptography is a field of science that aims to maintain the confidentiality of messages from unauthorized parties. The cryptographic algorithm that will be used is the Digital Signature Algorithm (DSA) asymmetric cryptography algorithm and combined with the Advanced Encryption Standard (AES) symmetric algorithm. DSA as authentication using a hash function cannot perform encryption and decryption, with a combination of Advanced Encryption Standard (AES) cryptography to enable encryption and decryption. Advanced Encryption Standard (AES) is a block cipher algorithm and has a symmetrical nature that uses a symmetric key during the encryption and decryption process. The text file type to be used is in the format (*.xlsx). Files that have been encrypted still use the same extension as the previous file but cannot be opened. Encrypted files have a size change of 30%. The decrypted file is exactly the same as the initial file before the encryption process is carried out. Keywords: cryptography, digital signature algorithm, advanced encryption standard, text data Abstrak: Masalah keamanan dan kerahasiaan data merupakan dua aspek penting dalam sistem informasi. Hal ini erat kaitannya dengan pentingnya informasi yang dikirimkan dan diterima oleh masyarakat yang berkepentingan. Kriptografi merupakan bidang ilmu yang menjaga kerahasiaan pesan dari pihak yang tidak berkepentingan. Algoritma kriptografi yang akan digunakan adalah algoritma kriptografi asimetris Digital Signature Algorithm (DSA) dan dikombinasikan dengan algoritma simetris Advanced Encryption Standard (AES). DSA sebagai autentikasi menggunakan fungsi hash tidak dapat melakukan enkripsi dan dekripsi, dengan kombinasi kriptografi Advanced Encryption Standard (AES) agar dapat melakukan enkripsi dan dekripsi. Advanced Encryption Standard (AES) merupakan algoritma enkripsi blok dan memiliki sifat simetris yang menggunakan kunci simetris selama enkripsi dan dekripsi. Jenis file teks yang akan digunakan berformat (*.xlsx). File yang telah dienkripsi masih memakai ekstensi seperti file sebelumnya namun tidak dapat dibuka. File hasil enkripsi memiliki perubahan ukuran sebesar 30%. File hasil dekripsi sama persis seperti file awal sebelum dilakukan proses enkripsi. Kata kunci: kriptografi, digital signature algorithm, advanced encryption standard, data teks
Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia
Mhd. Furqan;
Ahmad Fakhri Ab. Nasir
Journal of Applied Engineering and Technological Science (JAETS) Vol. 5 No. 2 (2024): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37385/jaets.v5i2.4498
The concept of religious moderation encompasses three key aspects, namely moderate thinking and understanding, moderate behavior, and moderate religious worship. With advancements in information technology, people now have the means to express their opinions through microblogs, pertaining to issues of religious moderation initiated by the Ministry of Religion of Indonesia. This study aims to evaluate public policies introduced by the Ministry of Religion regarding religious moderation such as changes in the halal logo, transfer of authority for halal certification, and regulations on the volume of loudspeakers in the mosque. Public opinions collected as the big data to get the information about public sentiment with those issues. Sentiment analysis was conducted on three primary microblogs such as Twitter, Instagram and YouTube using six machine learning algorithms. These include Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Bagging Classifier, Random Forest, and Gradient Boosting Classifier. The test results showed the highest accuracy is Gradient Boosting reached 82.27%.
Penerapan Sistem Pengelolaan Limbah Medis di Rumah Sakit Umum Daerah Dr. Pirngadi Kota Medan
Agpina, Pipi;
Furqan, Mhd.
Health Information : Jurnal Penelitian Content Digitized
Publisher : Poltekkes Kemenkes Kendari
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Rumah sakit memiliki peran penting dalam menyediakan pelayanan kesehatan, namun limbah medis yang dihasilkan dapat menimbulkan risiko kesehatan dan merusak lingkungan jika tidak dikelola dengan baik. Limbah medis ini terdiri dari berbagai jenis, termasuk jarum suntik, bahan kimia, limbah infeksius, dan limbah farmasi yang tidak terpakai. Jika tidak dikelola dengan baik, limbah medis tersebut dapat menimbulkan risiko kesehatan bagi pasien, tenaga medis, serta merusak lingkungan sekitarnya. Penelitian ini menggunakan pendekatan kualitatif, lokasi penelitian di Rumah Sakit Umum Daerah Dr. Pirngadi di Kota Medan. Waktu penelitian dilakukan di bulan maret - juni 2023, Sumber data yang digunakan dalam penelitian ini adalah Data primer yang dijadikan sumber data dalam penelitian ini adalah hasil wawancara kepada 7 (tujuh) orang Informan dari petugas cleaning servies yang bekerja di RSUD Dr. Pirngadi Kota Medan. Hasil penelitian menunjukkan bahwa pengelolaan limbah medis di rumah sakit tersebut melalui tahap pemilahan, pengangkutan, dan pemusnahan. Limbah medis dipilah menggunakan tong sampah berwarna kuning, kemudian diangkut ke tempat pembuangan sementara menggunakan tong sampah tertutup. Pemusnahan limbah medis dilakukan melalui incinerator dengan suhu 1200ºC. Sistem pengelolaan limbah medis yang dikembangkan diharapkan dapat menjadi acuan bagi rumah sakit lain dalam meningkatkan efektivitas dan efisiensi pengelolaan limbah medis serta menjaga kebersihan lingkungan dan kesehatan masyarakat sekitar rumah sakit.
Max-Miner Method in Improving Food Sales Strategy
Furqan, Mhd;
Sriani, Sriani;
Ningsih, Siti Alus
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i1.11892
Competition in the corporate world is currently very intense, especially in the retail business sector, one of which is the retail food business. Building a minimarket retail business, provides staple foods that are unavoidable using information technology to support the smooth sales of these products. The use of this information technology has become a necessity in the retail minimarket business world whose aim is to provide maximum profits and minimal losses with promotions that must be done in terms of providing the best service in a retail minimarket that must use the best business strategy, but sometimes the retail minimarket manager constrained in determining the sales strategy. One of the factors is the difficulty of producing an analysis related to the products sold. Therefore we need an analysis of the application of data mining so that product sales at retail minimarkets are increasing and service to consumers is getting better. In this design data mining and algorithms are used, namely market basket analysis and Max-Miner. By applying the Max-Miner method in the data mining process for sales strategies at retail minimarkets, it will produce rule associations that will become product recommendations that will provide a decision in sales strategy for the mini market
Automatic Plant Watering System Based on Air Temperature and Soil Humidity Using the Fuzzy Sugeno Method
Furqan, Mhd;
Lubis, Solly Aryza;
Harahap, Rosa Linda
Sinkron : jurnal dan penelitian teknik informatika Vol. 6 No. 4 (2022): Article Research: Volume 6 Number 4, October 2022
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v7i4.11893
Plants need water to grow well, so watering must follow the plant's needs. Parameters that affect the process of watering plants are air temperature and soil moisture, thus, we need a control system that can make decisions in the form of watering time to meet plant water needs according to their needs, namely an automatic watering system. Fuzzy method can be used for human-like decision making in a control system. This study uses the Sugeno fuzzy method which is integrated into the Microcontroller as the controller. Testing of this system is carried out on eggplant plants which are regulated based on how long the watering time is so that the air temperature and soil moisture are following the plant's needs. The test resulted that the effective watering time interval so that the eggplant soil moisture was maintained at 40-60% was 21 seconds. It can be concluded that the fuzzy inference embedded in the design has been able to overcome the problem of watering eggplant plants, where the test shows that after the watering process, the soil moisture value can be maintained at an average value of 55% so that the soil moisture is following the needs of the plant.
Sentiment Analysis towards the 2024 Vice Presidential Candidate Debate Using the Support Vector Machine Algorithm
Harahap, Raihan Rizieq;
Furqan, Mhd.
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024
Publisher : Politeknik Ganesha Medan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33395/sinkron.v8i3.13903
In today’s digital era, social media plays an important role in disseminating information and influencing public opinion. For instance, YouTube. At the 2024 Vice Presidential Debate, YouTube became a medium where people gave various comments. This study aimed to analyze public sentiment through comments on the 2024 Vice Presidential Debate on the Metro TV YouTube channel. This study used descriptive quantitative methods with the Support Vector Machine algorithm to identify various public comments. The results show that from the data experiment taken as many as 1012 data, 80% data training amounting to 809 data and 20% data testing amounting to 203 data is carried out. An accuracy of 82% was obtained with a precision value of 80%, a recall value of 87%, and an f1-score value of 83%. With a fairly high accuracy value, the support vector machine model can be said to be the right model to calculate the accuracy value in sentiment analysis.