p-Index From 2021 - 2026
7.885
P-Index
This Author published in this journals
All Journal Teknika Techno.Com: Jurnal Teknologi Informasi Jurnal Informatika PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic Jurnal Teknologi Informasi dan Ilmu Komputer CESS (Journal of Computer Engineering, System and Science) JURNAL PENGABDIAN KEPADA MASYARAKAT Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING IT JOURNAL RESEARCH AND DEVELOPMENT Indonesian Journal of Artificial Intelligence and Data Mining JRST (Jurnal Riset Sains dan Teknologi) Jurnal Teknovasi : Jurnal Teknik dan Inovasi Mesin Otomotif, Komputer, Industri dan Elektronika JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jusikom : Jurnal Sistem Komputer Musirawas ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA JISTech (Journal of Islamic Science and Technology) Jurnal Teknologi Sistem Informasi dan Aplikasi JSiI (Jurnal Sistem Informasi) IJISTECH (International Journal Of Information System & Technology) Journal on Education JOURNAL OF SCIENCE AND SOCIAL RESEARCH Jurnal Teknik Elektro dan Komputer TRIAC Jurnal Riset Informatika INFOMATEK: Jurnal Informatika, Manajemen dan Teknologi METIK JURNAL Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar Jurnal Mantik Journal of Information Systems and Informatics INFOKUM U-NET Jurnal Teknik Informatika Journal of Computer Networks, Architecture and High Performance Computing Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknik Informatika (JUTIF) IJISTECH Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Jurnal Computer Science and Information Technology (CoSciTech) International Journal of Artificial Intelligence and Robotics (IJAIR) Jurnal Pendidikan dan Teknologi Indonesia Journal La Multiapp KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Info Sains : Informatika dan Sains Jurnal IPTEK Bagi Masyarakat Journal of Computer Science and Informatics Engineering Journal Of Human And Education (JAHE) Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram International Conference on Sciences Development and Technology Innovative: Journal Of Social Science Research Jurnal Pengabdian Masyarakat VISA: Journal of Vision and Ideas Cosmic Jurnal Teknik
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Computer Networks, Architecture and High Performance Computing

Classification of Watermelon Ripeness Levels Using HSV Color Space Transformation and K-Nearest Neighbor Method Efendi, Ayu Mahriza Agustin; Sriani, Sriani; Hasibuan, Muhammad Siddik
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.3999

Abstract

Watermelons had high appeal due to their sweet taste, refreshing nature, and numerous benefits. However, consumers often faced difficulties in selecting suitable fruit because of the subtle differences between fully ripe and half-ripe watermelons. One important indicator of a watermelon’s ripeness was the yellowish pattern on its skin. In this study, the proposed use of digital image processing methods, specifically the HSV Color Space Transformation, was aimed at extracting watermelon images and employing the K-Nearest Neighbor (K-NN) method to classify them into two categories: "Ripe" and "Half-Ripe." HSV (Hue Saturation Value) was a color extraction method used to convert colors from the RGB model. The Hue component indicated the type of color, Saturation measured the purity of the color, and Value measured the brightness of the color on a scale from 0 to 100%. In this research, the K-Nearest Neighbor (K-NN) method was applied to classify watermelon images based on the extraction of skin color features. This method compared a new image (test data) with training images to determine classification based on the nearest distance with a parameter of k=3. The data used consisted of 120 images, with 92 images used as training data and 28 images as test data. Experimental results showed an accuracy of 89%, with 25 images correctly classified and 3 images misclassified.
Classification of Watermelon Ripeness Levels Using HSV Color Space Transformation and K-Nearest Neighbor Method Efendi, Ayu Mahriza Agustin; Sriani, Sriani; Hasibuan, Muhammad Siddik
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.3999

Abstract

Watermelons had high appeal due to their sweet taste, refreshing nature, and numerous benefits. However, consumers often faced difficulties in selecting suitable fruit because of the subtle differences between fully ripe and half-ripe watermelons. One important indicator of a watermelon’s ripeness was the yellowish pattern on its skin. In this study, the proposed use of digital image processing methods, specifically the HSV Color Space Transformation, was aimed at extracting watermelon images and employing the K-Nearest Neighbor (K-NN) method to classify them into two categories: "Ripe" and "Half-Ripe." HSV (Hue Saturation Value) was a color extraction method used to convert colors from the RGB model. The Hue component indicated the type of color, Saturation measured the purity of the color, and Value measured the brightness of the color on a scale from 0 to 100%. In this research, the K-Nearest Neighbor (K-NN) method was applied to classify watermelon images based on the extraction of skin color features. This method compared a new image (test data) with training images to determine classification based on the nearest distance with a parameter of k=3. The data used consisted of 120 images, with 92 images used as training data and 28 images as test data. Experimental results showed an accuracy of 89%, with 25 images correctly classified and 3 images misclassified.
Co-Authors Abdul Halim Hasugian Ahmad Affandi Rasyad Nasution Ahmad al-Badawi, Abdullah Aidil Halim Lubis Aidil Halim Lubis Ali Darta Ananda, Rizkika Andi Andi Anisa Simanjuntak Armansyah Asti, Dini Aulia Nurhasanah, Dhea Aulia, Dhinanda Aulia, M. Arif Bela Sapitri Br Sembiring, Trisna Amanda Dicky Adityanta Sinuraya Efendi, Ayu Mahriza Agustin Erwin Nasution Fadhli Rizqi Haidar Pane Fatih Muhammad, Aji Haikal, Baginda Fikri Hamzah, Aldiva Handira, Dysa Harahap, Parlindungan Harahap, Raihan Hasibuan, Bunga Lestari Heri Santoso Hisbullah, Riki Hotmaidah Harahap Hutabarat, Dio Wahyu Habibi Ichsan Rafisyah Ilka Zufria Indah Permata Sari Ivan Prayuda Khairani Ritonga, Putri Kurniawan, Riski Askia Lestari, Rika Dinda Lipantri Mashur Gultom Lorena, Ayu Lubis, Muhammad Taufik Hakim Lubis, Putri Natasya Mahdiania, Diania Marpaung, Devi Aryani Mhd Furqan Mhd Ikhsan Rifki Mitha Rosadi Mrg, Ricky Aulia Muhammad Abi Muzaki Muhammad Dedi Irawan Muhammad Fadiga Muhammad Ikhsan Muhammad Zulfahmi Nasution Mukhairi Rizal, Muhammad Nasution, Yusuf Ramadhan Naufal, Rahmad Piramida, Piramida Pratama, Dian Agus Rahman, Anisa Rahmat Kurniawan Rahmat Kurniawan R Rakhmat Kurniawan R Ramadhan, Rizky Syahrul Rangkuti, M. Naufal Reza Adhitya Budiman Riska Hasibuan Rizkika Ananda Rosadi, Mitha Sandira, Sri Delwis Selian, Suci Nadillah Serdano, Akbar Sholihin, Sazili Siagian, Qori Azmi Ayasy Sinuraya, Dicky Adityanta Siregar, Putri Aprilia Sita Kirana Atikah Siti Nurhaliza Sofyan Sri Wahyuni Sriani Sriani Suendri Suhardi Suhardi Suhardi, Suhardi Supiyandi Supiyandi Syahputra, Surya Syahputri, Cindy Novi Syaqila, Saidatus Tanjung, Tajuddin Tarigan, Mayang Safhira Triase Triase, Triase Utomo, Imam Yudhistira, Yudhistira Yusuf Karim Rambe Yusuf Ramadhan Nasution Yusuf Ramadhan Nasution, Yusuf Ramadhan