The selection of the right team members is critical to the success of complex and multidisciplinary Metaverse projects, the previous method used in this selection employed criteria weights based on individual evaluator assessments.. This study proposes the application of a combination of MEREC (method based on the removal effects of criteria) and WASPAS (weighted aggregated sum product assessment) methods to build a DSS in the selection of Metaverse team members. The MEREC method is used to determine the weight of relevant criteria, such as technical skills, communication, innovation, problem-solving, team collaboration, and experience. Meanwhile, the WASPAS method is used to rank candidates based on evaluation scores calculated using a combination of the Weighted Sum Model (WSM) and the Weighted Product Model (WPM). The results showed that the candidate with the highest score was Member Candidate 5 with a score of 0.9806, followed by Member Candidate 11 with a score of 0.944 and Member Candidate 9 with a score of 0.9433. This research proves that the combination of MEREC and WASPAS methods can be used effectively to select team members who have the best quality and are in accordance with the needs of Metaverse projects. A major contribution of this research is the development of a more objective and structured method for the selection of team members in technology projects that require multidisciplinary expertise