Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Artificial Intelligence Research

Uplift modeling VS conventional predictive model: A reliable machine learning model to solve employee turnover Wijaya, Davin; DS, Jumri Habbeyb; Barus, Samuelta; Pasaribu, Beriman; Sirbu, Loredana Ioana; Dharma, Abdi
International Journal of Artificial Intelligence Research Vol 5, No 1 (2021): June 2021
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1478.697 KB) | DOI: 10.29099/ijair.v4i2.169

Abstract

Employee turnover is the loss of talent in the workforce that can be costly for a company. Uplift modeling is one of the prescriptive methods in machine learning models that not only predict an outcome but also prescribe a solution. Recent studies are focusing on the conventional predictive models to predict employee turnover rather than uplift modeling. In this research, we analyze whether the uplifting model has better performance than the conventional predictive model in solving employee turnover. Performance comparison between the two methods was carried out by experimentation using two synthetic datasets and one real dataset. The results show that despite the conventional predictive model yields an average prediction accuracy of 84%; it only yields a success rate of 50% to target the right employee with a retention program on the three datasets. By contrast, the uplift model only yields an average accuracy of 67% but yields a consistent success rate of 100% in targeting the right employee with a retention program.
Co-Authors - Afrizal Admin Alief Admin Alif Admin Alif Afriyanti Azhar Alif, Admin Amir Mahmud Husein, Amir Mahmud Andika, Ahmad Zaki Andrian Anggela Marta Tasman Arif Juliari Kusnanda Armaini - Baharuddin Shaleh Barus, Samuelta Bayu Afnovandra Perdana Candra, Windy Chandra, Suwito Christnatalis Crispin, Andrian Reinaldo Dedi Nofiandi Delima Sitanggang, Delima Dicky DS, Jumri Habbeyb Edbert, Edbert Edison Munaf Edison Munaf Elida Mardiah Eri Sulyanti Eti Farda Husin Eti Farda Husin HAFIL ABBAS Hafil Abbas Harvianti, Yuniar Hazli Nurdin Heyneker, Daniel Hulu, Victor Trismanjaya Husni Mukhtar I PUTU KOMPIANG I. P. Kompiang Indah Indah Indrawati - Indrawati Indrawati IRSAN RYANTO Jabang Nurdin Jamsari Jamsari Jefika, Meliy Kamble, Pratik Bibhisan Kosasi, Hendrick Lazuardya , Kevin Lee Wah Lim MARBUN, ADVENT TORAS Mardi Turnip, Mardi MARIA ENDO MAHATA Marniati Salim Mawaddah Harahap, Mawaddah Melona Siska Musifa, Eva Nasril Nasir Nasril Nasir Nasril Nasir Nasril Nasir Nasril Nasir Nurhamidah Oktaf Rina Oktoriza, Ghifarizka Pasaribu, Beriman Periadnadi - Periadnadi Periadnadi Prayogi, Gali PULUNGAN, JURMIDA PURBA, JOICE ANGELINA Rahmadani Wulandari Rahmatika Yani Rahmiana Zein Randi, Albert Refilda Refilda Riska Hernandi Saragi, Yosua Morales Sekatresna, Widiyanti Shaleh, Baharuddin Sirbu, Loredana Ioana Siti Aisyah Siti Hajjir, Siti Sulyanti, Eri Sulyanti, Eri Sumaryati Syukur Suryani Suryani Syafriza Yanti Syafrizayanti, Syafrizayanti Syafrizayanti, Syafrizayanti Syafrizayanti, Syafrizayanti Syukri Arief Talib, Ramanisa Muliani Tania, Alinda Tarigan, Julio Putra Toyohide Takeuchi TRIMURTI HABAZAR Turnip, Josua Presen Valentino, Bue Vanness, Jeff Veron, Veron Wahida Nia Elfiza Warni, Mega Waruwu, Jefrin Widiyanti Sekatresna Wijaya, Davin Wijaya, Eko Bambang Wijaya, Jeremy Wijaya, Vincent William Wizna (Wizna) Wulandari, Rahmadani Yetria Rilda Yose Rizal Yoserizal Yoserizal Yunazar Manjang Yunazar Manjang Yunazar Manjang Zulkarnain Chaidir