Claim Missing Document
Check
Articles

Pendampingan Pemanfaatan Google Site Sebagai Media Pembelajaran Berbasis Web di SMPN 7 Semarang Rakasiwi, Sindhu; Kurniawan, Defri; Hidayat, Erwin Yudi; Zeniarja, Junta; Dzaky, Azmi Abiyyu; Haresta, Alif Agsakli
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 8, No 2 (2025): MEI 2025
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v8i2.2970

Abstract

A website is the heart of an institution, school or company profile. With a web appearance that is always active and always has useful content, it will add to the image of the owner of the website. Because of this, the community service team wants to provide assistance to teachers so that they can also contribute to filling the website. So not only IT teachers can contribute to the website, but all teachers can contribute so that the website can be more active and interactive for students, parents of students and even for the general public who want to know information about SMPN 07 Semarang. And through this assistance, it also utilizes the Google site for more interactive learning and students are also more active in creating learning for the future.
Penerapan Convolutional Neural Network dengan ResNet-50 untuk Klasifikasi Penyakit Kulit Wajah Efektif Khani, Nadia Ifti; Rakasiwi, Sindhu
Jurnal Pendidikan Informatika (EDUMATIC) Vol 9 No 1 (2025): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v9i1.29572

Abstract

Skin diseases have a high prevalence in Indonesia, reaching 12.95% of the population, so early detection is an important step in handling them. This research aims to implement deep learning based on Convolutional Neural Network (CNN) with ResNet-50 architecture to improve the accuracy of facial skin disease classification through medical images. The data used comes from the Augmented Skin Conditions (Kaggle) dataset with a total of 2,394 images, which are processed through preprocessing, augmentation, and division of training and testing data with a ratio of 80%: 20%. The augmentation process resulted in image variations, but vertical distortions were found due to zooming settings and possible shearing effects. The model achieved an accuracy of 94%, higher than the previous study on pneumonia classification using ResNet-50, which obtained an accuracy of 86% and was affected by data imbalance and similarity of visual features between classes. These results show that ResNet-50 can overcome the vanishing gradient problem and extract complex features from medical images optimally. With this performance, this model can be applied in artificial intelligence systems to assist medical personnel in the early detection of skin diseases quickly, accurately, and efficiently.
Pelatihan Produksi Foto Panorama untuk Mendukung Pembelajaran Berbasis VR Tour untuk Guru dan Dosen pada Perkumpulan Profesi Multimedia dan Teknologi Informasi (PPMULTINDO) Sindhu Rakasiwi; Candra Irawan; Cahaya Jatmoko; Lalang Erawan; Suprayogi Suprayogi
Transformasi Masyarakat : Jurnal Inovasi Sosial dan Pengabdian Vol. 2 No. 3 (2025): :Transformasi Masyarakat : Jurnal Inovasi Sosial dan Pengabdian
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62383/transformasi.v2i3.1728

Abstract

The COVID-19 pandemic has triggered a transformation in online learning, requiring teachers and lecturers to adapt to educational technology, including Virtual Reality (VR) Tour. However, limited understanding and motivation are the main challenges in implementing this technology. This community service aims to provide practical training in developing VR Tour as an interactive learning media for teachers and lecturers at Rumah Diklat Indonesia. The implementation method involves an online workshop using the Zoom application, which includes a tutorial on creating 360° panoramic photos via Google Street View and processing VR Tour via the Theasys.io platform. Participants also receive technical guidance and hands-on practice sessions. The results show that participants are able to produce VR Tour content for learning, as well as improve their understanding of technology integration in education. This training equips participants with basic skills to develop virtual learning media, expand students' learning access creatively and innovatively. In conclusion, the use of VR Tour has the potential to improve the quality of distance learning, while encouraging educators to continue to adapt to technological developments in the digital era.
Pemanfaatan Artificial Intelegence untuk Membangun Website Pembelajaran bagi Guru dan Dosen pada Perkumpulan Profesi Multimedia dan Teknologi Informasi (PPMULTINDO) Cahaya Jatmoko; Sindhu Rakasiwi; Feri Agustina; Daurat Sinaga; Heru Lestiawan
Kesejahteraan Bersama : Jurnal Pengabdian dan Keberlanjutan Masyarakat Vol. 2 No. 3 (2025): Juli : Kesejahteraan Bersama : Jurnal Pengabdian dan Keberlanjutan Masyarakat
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62383/bersama.v2i3.1725

Abstract

The utilization of Artificial Intelligence (AI) technology in education has become increasingly important with the development of information technology. This research aims to provide training for teachers and lecturers in using AI to build interactive and effective learning websites. The method used is online training via Zoom Meeting, which includes an introduction to basic AI concepts, practice creating learning websites, and evaluating training outcomes. The training was conducted over three days from October 26 to 28, 2024, with participants from various regions across Indonesia. The results showed that participants were able to understand AI concepts and apply them effectively in building learning websites more efficiently and creatively. Additionally, the use of AI helped improve the quality of learning content to be more personalized and adaptive to students' needs. Thus, the application of AI in education can serve as an innovative solution to enhance the quality of learning in the digital era.
Sistem Informasi Pembayaran Administrasi Sekolah Berbasis Web dan Mobile pada MTS NU 17 Kyai Jogoreso Fitrianto, Yuli; Rakasiwi, Sindhu
Krea-TIF: Jurnal Teknik Informatika Vol 11 No 1 (2023)
Publisher : Fakultas Teknik dan Sains, Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sistem pembayaran administrasi sekolah di MTs NU 17 Kyai Jogoreso, Kendal menggunakan metode konvensional dengan cara penulisan manual pada buku dan kartu pembayaran siswa menimbulkan permasalahan banyaknya proses yang harus dilalui yang tidak efisien waktu. Sistem informasi berbasis web dan mobile dibutuhkan untuk memangkas proses, mengefisienkan waktu dan memudahkan pihak tata usaha untuk pengelolaan administrasi. Sistem dibangun menggunakan bahasa pemrograman PHP, MySQL sebagai database, dan Framework Bootstrap sebagai desain antarmukanya untuk sistem berbasis web, serta Java dan Flutter untuk sistem berbasis mobile. Metode penelitian menggunakan Research and Development(R&D), sedangkan untuk perancangannya menggunakan metode Object Oriented Programming (OOP) yang menggunakan Unified Modeling Language (UML). Pengujian dilakukan dua tipe yaitu uji validasi sistem serta uji coba produk. Hasil uji validasi memperoleh skor 38 untuk sistem yang berbasis web dan skor 32 untuk berbasis mobile, keduanya termasuk kategori sangat valid. Uji coba produk untuk kedua sistem mendapatkan skor 31 dengan kategori sangat efektif. Sistem ini pun mampu menyederhanakan setiap proses dan menyingkat waktu pelayanan dari sepuluh menit menjadi tiga menit pada sistem yang lama.
Systematic Literature Review Trend Augmented Reality 2019-2023 dan Peluang Penerapannya di Masa Depan Fitrianto, Yuli; Rakasiwi, Sindhu; Kurnialensya, Taufik
Krea-TIF: Jurnal Teknik Informatika Vol 11 No 2 (2023)
Publisher : Fakultas Teknik dan Sains, Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/krea-tif.v11i2.15360

Abstract

Augmented reality (AR) merupakan teknologi yang dapat menyatukan objek visual yang dibuat melalui komputer dengan dunia nyata dengan menambahkannya secara real-time. Penelitian ini melakukan peninjauan berupa Systematic Literature Review (SLR) terhadap penerapan AR di berbagai bidang dalam 5 tahun terakhir yaitu dari tahun 2019 hingga 2023. Tujuan dari SLR ini adalah untuk mengidentifikasi tren penerapan AR di 5 tahun terakhir, kemudian memprediksi potensi dan tantangan yang akan dihadapi di masa depan, serta mengajukan beberapa poin yang dapat digunakan sebagai saran penerapan AR selanjutnya. Sebanyak 500 judul artikel penelitian tentang AR diambil dari hasil pencarian melalui pengindeks database Google Scholar dengan alat bantu berupa software Publish or Perish dari Harzing. Visualisasi data dilakukan menggunakan software VOSviewer untuk melihat keterkaitan antar bidang pada AR, sedangkan pemfilteran artikel yang dilakukan untuk memilih artikel-artikel yang benar-benar berdampak menggunakan pedoman Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Flow Diagram. Artikel-artikel yang telah terpilih kemudian dilakukan pengelompokan per bidangnya untuk dilakukan analisis. Hasil yang diperoleh pada SLR kali ini adalah bidang pendidikan menjadi tren penerapan AR di 5 tahun terakhir dan kemungkinan besar akan terus berlanjut di tahun-tahun berikutnya, disusul penerapan di bidang industri, retail dan pemasaran. Bidang militer berpotensi besar untuk penerapan AR di masa depan mengingat hingga akhir penelitian ini dibuat, situasi keamanan dunia masih panas. Tantangan yang dihadapi di dunia pendidikan adalah perlunya dukungan pihak institusi terhadap guru atau pengajar serta kesiapsediaan teknologi, sedangkan di bidang industri terdapat tantangan pada pemilihan divisi yang tepat untuk penerapan AR tanpa membebani pekerjaan. Terakhir, 5 poin saran diberikan pada penelitian ini untuk penerapan AR yg lebih efektif.
Analisis Capaian Pembelajaran Mata Kuliah Keterampilan Interpersonal bagi Mahasiswa dalam Meningkatkan Komunikasi dan Pengembangan Profesional Yani Parti Astuti; Erlin Dolphina; Dewi Agustini Santoso; T.Sutojo; Erna Zuni Astuti; Edy Mulyanto; Sindhu Rakasiwi
Inovasi Sosial : Jurnal Pengabdian Masyarakat Vol. 2 No. 3 (2025): Agustus : Inovasi Sosial : Jurnal Pengabdian Masyarakat
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/inovasisosial.v2i3.2020

Abstract

In today's world, many young individuals still lack effective communication skills, a trend that is evident among university students, particularly those from Generation Z. These students, despite having access to technology and social media, are often not taught how to communicate in a professional and respectful manner. This paper discusses the importance of communication skills and their development through the Interpersonal Skills (KI) course. Within this course, students not only develop communication abilities but also both soft and hard skills essential for their personal and professional growth. The course includes various assessments, one of which is the Community Service (PKM) output. This PKM aims to provide students with practical experience in communication by engaging with external partners and presenting ideas related to their academic programs. The activities conducted under this PKM serve as an assignment for the course, contributing to grades for assignments, Mid-Semester Exams (UTS), and Final Semester Exams (UAS). Students are tasked with creating proposals, reports, posters, and videos as part of the assignment, and for the UTS, they present proposals to their partners. The UAS grade is based on the final report presentation, showcasing the results of their PKM activities. Through the KI course, students gain valuable experience in communicating with external partners, collaborating in teams, and presenting their work confidently in front of their peers. These activities not only enhance students' communication skills but also foster leadership qualities and teamwork, preparing them for professional environments. Thus, the KI course plays a crucial role in developing interpersonal communication skills that are essential in today's interconnected world.
Deep Learning-Based Eye Disorder Classification: A K-Fold Evaluation of EfficientNetB and VGG16 Models Paramita, Cinantya; Rakasiwi, Sindhu; Andono, Pulung Nurtantio; Shidik, Guruh Fajar; Shier Nee Saw; Rafsanjani, Muhammad Ivan
Scientific Journal of Informatics Vol. 12 No. 3: August 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i3.26257

Abstract

Purpose: The study evaluates EfficientNetB3 and VGG16 deep learning architectures for image classification, focusing on stability, accuracy, and interpretability. It uses Gradient-weighted Class Activation Mapping to improve transparency and robustness. The research aims to create reliable AI-based diagnostic tools. Methods: The study used a dataset of 4,217 color retinal fundus images divided into four classes: cataract, diabetic retinopathy, glaucoma, and normal. The dataset was divided into 70% for training, 10% for validation, and 20% for testing. The researchers used a transfer learning approach with EfficientNetB3 and VGG16 models, pretrained on ImageNet. Real-time augmentation was applied to prevent overfitting and improve generalization. The models were compiled with the Adam optimizer and trained with categorical cross-entropy loss. Early stopping was implemented to allocate computational resources efficiently and reduce overfitting. A learning rate scheduler (ReduceLROnPlateau) was added to adjust the learning rate if no significant improvement was made concerning validation loss. EfficientNetB3 was more efficient in model size, possessing only 12 million parameters compared to VGG16's 138 million, making it suitable for resource-constrained mobile or embedded systems. The final evaluation was done on the held-out test set. Result: The EfficientNetB3 architecture outperforms VGG16 in classification accuracy and loss value stability, with an average accuracy of 93%. It also exhibits better transparency and predicted accuracy, making it a reliable model for medical image categorization. Novelty: This work introduces a novel framework integrating EfficientNetB3 architecture, stratified cross-valuation, L2 regularization, and Grad-CAM-based interpretability, focusing on openness and explainability in model evaluation.
Enhancing Liver Cirrhosis Staging Accuracy using Optuna-Optimized TabNet Arifin, Muhammad Farhan; Dewi, Ika Novita; Salam, Abu; Utomo, Danang Wahyu; Rakasiwi, Sindhu
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.11011

Abstract

Liver cirrhosis is a progressive chronic disease whose early detection poses a clinical challenge, making accurate severity staging crucial for patient management. This research proposes and evaluates a TabNet deep learning model, specifically designed for tabular data, to address this challenge. In the initial evaluation, a baseline TabNet model with its default configuration achieved a baseline accuracy of 65.11% on a public clinical dataset. To enhance performance, hyperparameter optimization using Optuna was implemented, which successfully increased the accuracy significantly to 70.37%, with precision, recall, and F1-score metrics each reaching 70%. The model's discriminative ability was also validated as reliable in multiclass classification through AUC metric evaluation. In addition to accuracy improvements, the model's interpretability was validated through the identification of key predictive features such as Prothrombin and Hepatomegaly, which align with clinical indicators. This study demonstrates that Optuna-optimized TabNet is an effective and interpretable approach, possessing significant potential for integration into clinical decision support systems to support a more precise diagnosis of liver cirrhosis.
HYBRID MODEL MACHINE LEARNING FOR DETECTING HOAXES Budi Hartono; Munifah; Sindhu Rakasiwi
Journal of Technology Informatics and Engineering Vol. 1 No. 1 (2022): April: Journal of Technology Informatics and Engineering
Publisher : University of Science and Computer Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtie.v1i1.142

Abstract

Unlimited availability of content provided by users on social media and websites facilitates aggregation around a broad range of people's interests, worldviews, and common narratives. However, over time, the internet, which is a source of information, has become a source of hoaxes. Since the public is commonly flooded with information, they occasionally find it difficult to distinguish misinformation disseminated on net platforms from true information. They may also rely massively on information providers or platform social media to collect information, but these providers usually do not verify their sources. The purpose of this research is to propose the use of machine learning techniques to establish hybrid models for detecting hoaxes. The research methodology used here is a feature extraction experiment, in which a series of features will be analyzed and grouped in an experiment to detect hoax news and hoax, especially in the political sphere by considering five modalities. The outcome of this research indicates that the relation between publisher Prejudice and the attitude of hyper-biased news sources makes them more possible than other sources to spread illusive articles, besides that the correlation between political Prejudice and news credibility is also very strong. This shows that the experiment using a hybrid model to detect hoaxes works. well. To achieve even better results in future research, it is highly recommended to analyze user-based features in terms of attitudes, topics, or credibility.
Co-Authors Abu Salam Agustinus Budi Santoso Albastomi, Taqius Shofi Andi Dharu Permana Andriana, Myra Arifin, Muhammad Farhan Ariyanto, Noval Arya Erlangga Astuti, Yani Parti budi hartono Cahaya Jatmiko Cahaya Jatmoko Cahyo Pangestu , Agus Candra Irawan Catur Supriyanto Daurat Sinaga Deddy Award Widya Laksana Dewi Agustini Santoso Dzaky, Azmi Abiyyu Edi Sugiarto Edwin Zusrony Edy Mulyanto Egia Rosi Subhiyakto Egia Rosi Subhiyakto, Egia Rosi Erlin Dolphina Erna Zuni Astuti Erna Zuni Astuti Erwin Yudi Hidayat Etika Kartikadarma Febryantahanuji Febryantahanuji Feri Agustina Fikri Budiman Guruh Fajar Shidik Haresta, Alif Agsakli Haryo Kusumo Haryo Kusumo Haryo Kusumo Heribertus Himawan Heru Lestiawan Ifan Rizqa Ika Novita Dewi Indra Laila Intan Nurul Alfiani Isnaini Khusnul Khotimah Jarot Dian Susatyono Jarot Dian Susatyono Jatmiko, Cahaya Jatmoko , Cahaya Junta Zeniarja Khani, Nadia Ifti Kurniawan, Defri Kusumo , Haryo Lalang Erawan Lalang Erawan Marjuni, Aris Moh Muthohir Mulyanto, Edy Munifah Murwoko, F Iwan Setyo Myra Andriana Nova Rijati Nur Rokhman Octaviani, Dhita Aulia Paramita, Cinantya Pulung Nurtantio Andono Putri, Chana Amelinda Rafsanjani, Muhammad Ivan Rifal Winazar Rifal Winazar Roymon Panjaitan Savicevic, Anamarija Jurcev Septiani, Karlina Dwi Shier Nee Saw Sinaga, Daurat Sri Wahyuning Suprapti suprayogi Suprayogi Suprayogi Syah Putra, Fernanda Mulya T.Sutojo Tantik Sumarlin . Taqius Shofi Albastomi Taufik Kurnialensya Triginandri, Rifqi Ubaidillah , Lutfi Utomo, Danang Wahyu Widya Laksana, Deddi Award Yani Parti Astuti Yuli Fitrianto