Claim Missing Document
Check
Articles

Found 33 Documents
Search

Evaluasi Kinerja Algoritma Machine Learning (ML) Menggunakan Seleksi Fitur pada Klasifikasi Diabetes Wantoro, Agus; Zulkifli; Fitria Yulia, Aviv; Yana Ayu, Dwi; Mustofa, Syazili
Jurnal Informatika Polinema Vol. 11 No. 3 (2025): Vol. 11 No. 3 (2025)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes Mellitus (DM) merupakan salah satu penyakit kronis yang prevalensinya terus meningkat secara global, termasuk di Indonesia. Deteksi dini dan diagnosis yang akurat sangat penting untuk mencegah komplikasi serius. Dalam beberapa tahun terakhir, pendekatan berbasis Machine Learning (ML) telah banyak digunakan untuk meningkatkan akurasi prediksi diabetes. Salah satu dataset yang sering digunakan dalam penelitian ini adalah Pima Indians Diabetes Dataset (PIDD). Dataset ini memiliki delapan fitur dan satu kelas. Tantangan utama dalam pemodelan ML untuk prediksi adalah adanya fitur yang tidak relevan dalam dataset, yang dapat menurunkan kinerja model. Kami menggunakan pendekatan seleksi fitur teknik Informasion Gain (IG) dan Gain Ratio (GR). Hasil eksperimen seleksi fitur menggunakan IG didapatkan empat fitur yang memiliki bobot >0.05 yaitu Glucose Plassma (0.190), BMI (0.074), Age (0.072), dan Insulin (0.059). Namun hasil yang berbeda ketika menggunakan teknik GR yaitu Glucose Plassma (0.986), BMI (0.086), Age (0.078), Pregnancies (0.051). Hasil seleksi fitur dan semua fitur digunakan untuk menguji algoritma ML seperti Naive Bayes, J48, AdaBoost, Random Tree, Random Forest, dan Super Vector Machine (SVM). Hasil evaluasi kinerja algoritma ML menunjukkan algoritma SVM memiliki kinerja terbaik menggunakan semua fitur PIDD. Temuan ini berbeda dengan penelitian lain yang menggunakan seleksi fitur justru meningkatkan kinerja algoritma ML. Selain itu, kami melakukan evaluasi terhadap waktu eksekusi model. Kami menemukan bahwa algoritma Naïve Bayes dan Random Tree memiliki waktu komputasi terbaik. Temuan ini memberikan gambaran umum tentang kemampuan ML untuk memprediksi diabetes menggunakan seleksi fitur yang dihasilkan oleh teknik IG dan GR maupun tanpa seleksi fitur.
Agile-Scrum Methodology for Hospital Information System Development Zulkifli, Zulkifli; Ratnasari, Ratnasari; Arifin, Yulyani; Habib, Cahya
Journal of Information System and Informatics Vol 7 No 2 (2025): June
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v7i2.1148

Abstract

Hospitals face significant challenges in managing large and complex data, and Hospital Information Systems (SIRS) are essential for supporting hospital operations. However, many SIRS projects experience delays and failures due to rigid development approaches. Agile-Scrum is proposed as a more flexible and adaptive solution, emphasizing collaboration and iterative processes to enhance the quality of healthcare services. This qualitative case study, conducted in a hospital with an internal development team, used observations, document analysis, and semi-structured interviews with 10 participants, including developers, a Scrum Master, and key hospital stakeholders. The findings indicate that implementing Agile-Scrum led to a 35% increase in team collaboration, a 40% improvement in responsiveness to changing requirements, and a 30% boost in overall project efficiency. The study highlights the effectiveness of Agile-Scrum in managing the complexities of SIRS development, especially through backlog organization, sprint planning, and stakeholder feedback. The study suggests further research to assess the long-term impact of Agile-Scrum in other information system development contexts.
Technical Guidance on Attendance List Management Applications and Updating SIASN Data for Civil Servant Lecturers Zulkifli, Zulkifli; Bintoro, Panji; Yana Ayu Andini, Dwi; Eko Setiawan, Agustinus; Herdia Andika, Tahta; Ardhy, Ferly
SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Vol. 6 No. 1 (2025)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/spekta.v6i1.11013

Abstract

Background: The implementation of the AMANDA (Attendance Management and SIASN Data Updating Application) has significantly improved educational administration, especially for civil servant lecturers. Contribution: AMANDA serves as a model for future public sector innovations, improving efficiency, accountability, and adaptability. Method: The background to the development of this application comes from challenges in manual processes which tend to be time consuming, prone to errors, and less efficient in terms of data processing. Results: It has reduced time spent on administrative tasks by 30% and decreased errors by 25%, enhancing accuracy and efficiency. User feedback has been positive, with 85% of lecturer satisfied, highlighting its ease of use. Conclusion: The application has also demonstrated the power of digital tools to streamline operations, improve data integrity, and promote user engagement. Furthermore, user satisfaction and training outcomes suggest that continued investment in technology and training is essential for optimizing administrative processes.