Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Bigram feature extraction and conditional random fields model to improve text classification clinical trial document Jasmir Jasmir; Siti Nurmaini; Reza Firsandaya Malik; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18357

Abstract

In the field of health and medicine, there is a very important term known as clinical trials. Clinical trials are a type of activity that studies how the safest way to treat patients is. These clinical trials are usually written in unstructured free text which requires translation from a computer. The aim of this paper is to classify the texts of cancer clinical trial documents consisting of unstructured free texts taken from cancer clinical trial protocols. The proposed algorithm is conditional random Fields and bigram features. A new classification model from the cancer clinical trial document text is proposed to compete with other methods in terms of precision, recall, and f-1 score. The results of this study are better than the previous results, namely 88.07 precision, 88.05 recall and f-1 score 88.06.
A New Classification Technique in Mobile Robot Navigation Siti Nurmaini; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.736

Abstract

This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs) technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed.
Improving Posture Accuracy of Non-Holonomic Mobile Robot System with Variable Universe of Discourse Siti Nurmaini; Bambang Tutuko; Kemala Dewi; Velia Yuliza; Tresna Dewi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 3: September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i3.6078

Abstract

This paper presents a method to decrease imprecision and inaccuracy that have the tendency to influence the posture of non-holonomic mobile by using the adaptive tuning of universe of discourse. As such, the primary objective of the study is to force the posture error of x(t), y(t) and θ(t) towards zero. Hence, for each step of tuning the fuzzy domain, about 20% of imprecision and inaccuracy had been added automatically into the variable universe fuzzy, while the control input was bound via scaling gain. Furthermore, the experimental results showed that the tuning of universe fuzzy parameters could increase the performance of the system from the aspects of response time and error for steady state through better control of inaccuracy. Besides, the domains of universe fuzzy input [-4,4] and output [0,6] exhibited good performance in inching towards zero values as the steady state error was about 1% for x(t) position, 0.02% for y(t) position, and 0.16% for θ(t) orientation, whereas the posture error in the given reference was about 0.0002%.
Cooperative Avoidance Control-based Interval Fuzzy Kohonen Networks Algorithm in Simple Swarm Robots Siti Nurmaini; Siti Zaiton; Ricy Firnando
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 4: December 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i4.495

Abstract

A novel technique to control swarm robot’s movement is presented and analyzed in this paper. It allows a group of robots to move as a unique entity performing the following function such as obstacle avoidance at group level. The control strategy enhances the mobile robot’s performance whereby their forthcoming decisions are impacted by its previous experiences during the navigation apart from the current range inputs. Interval Fuzzy-Kohonen Network (IFKN) algorithm is utilized in this strategy. By employing a small number of rules, the IFKN algorithms can be adapted to swarms reactive control. The control strategy provides much faster response compare to Fuzzy Kohonen Network (FKN) algorithm to expected events. The effectiveness of the proposed technique is also demonstrated in a series of practical test on our experimental by using five low cost robots with limited sensor abilities and low computational effort on each single robot in the swarm. The results show that swarm robots based on proposed technique have the ability to perform cooperative behavior, produces minimum collision and capable to navigate around square shapes obstacles.
Unidirectional-bidirectional recurrent networks for cardiac disorders classification Annisa Darmawahyuni; Siti Nurmaini; Muhammad Naufal Rachmatullah; Firdaus Firdaus; Bambang Tutuko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18876

Abstract

The deep learning approach of supervised recurrent network classifiers model, i.e., recurrent neural networks (RNNs), long short-term memory (LSTM), and gated recurrent units (GRUs) are used in this study. The unidirectional and bidirectional for each cardiac disorder (CDs) class is also compared. Comparing both phases is needed to figure out the optimum phase and the best model performance for ECG using the Physionet dataset to classify five classes of CDs with 15 leads ECG signals. The result shows that the bidirectional RNNs method produces better results than the unidirectional method. In contrast to RNNs, the unidirectional LSTM and GRU outperformed the bidirectional phase. The best recurrent network classifier performance is unidirectional GRU with average accuracy, sensitivity, specificity, precision, and F1-score of 98.50%, 95.54%, 98.42%, 89.93% 92.31%, respectively. Overall, deep learning is a promising improved method for ECG classification.
Deep learning with focal loss approach for attacks classification Yesi Novaria Kunang; Siti Nurmaini; Deris Stiawan; Bhakti Yudho Suprapto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18772

Abstract

The rapid development of deep learning improves the detection and classification of attacks on intrusion detection systems. However, the unbalanced data issue increases the complexity of the architecture model. This study proposes a novel deep learning model to overcome the problem of classifying multi-class attacks. The deep learning model consists of two stages. The pre-tuning stage uses automatic feature extraction with a deep autoencoder. The second stage is fine-tuning using deep neural network classifiers with fully connected layers. To reduce imbalanced class data, the feature extraction was implemented using the deep autoencoder and improved focal loss function in the classifier. The model was evaluated using 3 loss functions, including cross-entropy, weighted cross-entropy, and focal losses. The results could correct the class imbalance in deep learning-based classifications. Attack classification was achieved using automatic extraction with the focal loss on the CSE-CIC-IDS2018 dataset is a high-quality classifier with 98.38% precision, 98.27% sensitivity, and 99.82% specificity.
Neural network technique with deep structure for improving author homonym and synonym classification in digital libraries Firdaus Firdaus; Siti Nurmaini; Varindo Ockta Keneddi Putra; Annisa Darmawahyuni; Reza Firsandaya Malik; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18878

Abstract

Author name disambiguation (AND), also recognized as name-identification, has long been seen as a challenging issue in bibliographic data. In other words, the same author may appear under separate names, synonyms, or distinct authors may have similar to those referred to as homonyms. Some previous research has proposed AND problem. To the best of our knowledge, no study discussed specifically synonym and homonym, whereas such cases are the core in AND topic. This paper presents the classification of non-homonym-synonym, homonym-synonym, synonym, and homonym cases by using the DBLP computer science bibliography dataset. Based on the DBLP raw data, the classification process is proposed by using deep neural networks (DNNs). In the classification process, the DBLP raw data divided into five features, including name, author, title, venue, and year. Twelve scenarios are designed with a different structure to validate and select the best model of DNNs. Furthermore, this paper is also compared DNNs with other classifiers, such as support vector machine (SVM) and decision tree. The results show DNNs outperform SVM and decision tree methods in all performance metrics. The DNNs performances with three hidden layers as the best model, achieve accuracy, sensitivity, specificity, precision, and F1-score are 98.85%, 95.95%, 99.26%, 94.80%, and 95.36%, respectively. In the future, DNNs are more performing with the automated feature representation in AND processing.
Author identification in bibliographic data using deep neural networks Firdaus Firdaus; Siti Nurmaini; Reza Firsandaya Malik; Annisa Darmawahyuni; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha; Varindo Ockta Keneddi Putra
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18877

Abstract

Author name disambiguation (AND) is a challenging task for scholars who mine bibliographic information for scientific knowledge. A constructive approach for resolving name ambiguity is to use computer algorithms to identify author names. Some algorithm-based disambiguation methods have been developed by computer and data scientists. Among them, supervised machine learning has been stated to produce decent to very accurate disambiguation results. This paper presents a combination of principal component analysis (PCA) as a feature reduction and deep neural networks (DNNs), as a supervised algorithm for classifying AND problems. The raw data is grouped into four classes, i.e., synonyms, homonyms, homonyms-synonyms, and non-homonyms-synonyms classification. We have taken into account several hyperparameters tuning, such as learning rate, batch size, number of the neuron and hidden units, and analyzed their impact on the accuracy of results. To the best of our knowledge, there are no previous studies with such a scheme. The proposed DNNs are validated with other ML techniques such as Naïve Bayes, random forest (RF), and support vector machine (SVM) to produce a good classifier. By exploring the result in all data, our proposed DNNs classifier has an outperformed other ML technique, with accuracy, precision, recall, and F1-score, which is 99.98%, 97.98%, 97.86%, and 99.99%, respectively. In the future, this approach can be easily extended to any dataset and any bibliographic records provider.
Co-Authors A. Darmawahyuni A. I. Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Silvia Ade Silvia Ade Silvia Handayani Aditya Aditya Aditya, Aditya Agung Juli Anda Agus Triadi Agus Triadi Agus Triadi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasih Akhiar Wista Arum Andre Herviant Juliano Anggun Islami Anggun Islami Annisa Darmawahyuni Ardy Hidayat Arief Cahyo Utomo Armansyah, Risky Arnaldo, Muhammad Arum, Akhiar Wista Aulia Rahman Thoharsin B. Tutuko Bambang Tutuko Bambang Tutuko Bayu Wijaya Putra Benedictus Wicaksono Widodo Bhakti Yudho Suprapto Bhakti Yudho Suprapto Bhakti Yudho Suprapto Cindy Kesty Darmawahyuni, Annisa Darmawahyuni, Annisa Deris Stiawan Dewi, Kemala Dewi, Tresna Dian Palupi Rini Dian Palupi Rini Dian Palupi Rini Dimas Budianto Dinda Lestarini Dodo Zaenal Abidin Dwi Mei Rita Sari Ekawati Prihatini Erliza Yuniarti Fachrudin Abdau Fahreza, Irvan Falah Yuridho Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus, Firdaus Firsandaya Malik, Reza Ganesha Ogi GITA FADILA FITRIANA Hadipurnawan Satria Hanif Habibie Supriansyah Huda Ubaya Huda Ubaya Huda Ubaya Husnawati Husnawati Husnawati Husnawati Husnawati Husni, Nyayu Latifah Husni, Nyayu Latifah Irfannuddin Irfannuddin Irsyadi Yani Irvan Fahreza Iryadi Yani Iryadi Yani, Iryadi Isdwanta, Rendy Islami, Anggun Jasmir Jasmir Jasmir Jasmir Jordan Marcelino Kemala Dewi Khairunnisa, Cholidah Zuhroh Krisna Murti Kurniawan, Anggy Tias Kurniawan, Anggy Tyas Legiran Legiran M. Hashim, Siti Zaiton M. N. Rachmatullah M. Naufal Rachmatullah Maharani, Masayu Nadila Marcelino, Jordan Masayu Nadila Maharani Mira Afrina Muhamad Akbar Muhammad Afif Muhammad Anshori Muhammad Arnaldo Muhammad Fachrurrozi Muhammad Fachrurrozi Muhammad Irham Rizki Fauzi Muhammad Naufal Rachmatullah Muhammad Naufal, Muhammad Muhammad Roriz Muhammad Taufik Roseno, Muhammad Taufik Muzakkie, Mufida Nadia Ayu Oktabella, nadia ayu oktabella Novi Yusliani Nurqolbiah, Fatihani Nuswil Bernolian Nuswil Bernolian Nyayu Latifah Husni Nyayu Latifah Husni, Nyayu Latifah Oky Budiyarti Osvari Arsalan Passa, Rahma Satila Patiyus Agustiansyah PATIYUS AGUSTIANSYAH, PATIYUS Pola Risma PP Aditya, PP, Aditya, PP Pratama, Jimiria Putri Mirani Rachmamtullah, Muhammad Naufal Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan, Radiyati Umi Rahma Satila Passa Rendy Isdwanta Renny Amalia Pratiwi Reza Firsandaya Malik Reza Firsandaya Malik Ria Nova Ricy Firnando Ricy Firnando Ricy Firnando Rizal Sanif Rizki Kurniati Rossi Passarella Sahat Pangidoan Samsuryadi Samsuryadi Saparudin Saparudin Saparudin, Saparudin Sapitri, Ade Iriani Saputra, Tommy Sari, Dwi Mei Rita Sarifah Putri Raflesia Sarifah Putri Raflesia, Sarifah Putri Sastradinata, Irawan Sigit Prasetyo Noprianto Siti Zaiton Siti Zaiton M. Hashim Soedjana, Hardi Siswo Sri Desy Siswanti Suci Dwi Lestari Suci Dwi Lestari Suhandono, Nugroho Sukemi Sukemi Sukemi Sukemi Sukemi Sukman Tulus Putra Sutarno Sutarno Syamsul Arifin Syaputra, Hadi Tio Artha Nugraha Tresna Dewi Tresna Dewi Tri Undari Triadi, Agus Triadi, Agus Varindo Ockta Keneddi Putra Velia Yuliza Winda Kurnia Sari Wisnu Adi Putra Yani, Iryadi Yesi Novaria Kunang Yurni Oktarina Zaqqi Yamani