Claim Missing Document
Check
Articles

COMBINATION OF FAST HYBRID CLASSIFICATION AND K VALUE OPTIMIZATION IN K-NN FOR VIDEO FACE RECOGNITION Suciati, Nanik; Septiana, Nuning
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 6, No 1 (2020): January-June
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v6i1.1668

Abstract

Nowadays, the need for face recognition is no longer include images only but also videos. However, there are some challenges associated with the addition of this new technique such as how to determine the right pre-processing, feature extraction, and classification methods to obtain excellent performance. Although nowadays the k-Nearest Neighbor (k-NN) is widely used, high computational costs due to numerous features of the dataset and large amount of training data makes adequate processing difficult. Several studies have been conducted to improve the performance of k-NN using the FHC (Fast Hybrid Classification) method by optimizing the local k values. One of the disadvantages of the FHC Method is that the k value used is still in the default form. Therefore, this research proposes the use of k-NN value optimization methods in FHC, thereby, increasing its accuracy. The Fast Hybrid Classification which combines the k-means clustering with k-NN, groups the training data into several prototypes called TLDS (Two Level Data Structure). Furthermore, two classification levels are applied to label test data, with the first used to determine the n number of prototypes with the same class in the test data. The second classification using the optimized k value in the k-NN method, is employed to sharpen the accuracy, when the same number of prototypes does not reach n. The evaluation results show that this method provides 86% accuracy and time performance of 3.3 seconds.
Penggabungan Fitur Tekstur yang Invariant terhadap Iluminasi dan Fitur Bentuk untuk Deteksi Acute Lymphoblastic Leukemia Saputra, Rizal A; Fatichah, Chastine; Suciati, Nanik
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (628.19 KB) | DOI: 10.24002/jbi.v7i1.481

Abstract

Abstract. Detection with microscopic blood image can help early detection of Accute Lymphoblastic Leukemia (ALL). Therefore, image acquisition process under lighting variation cause varying illumination image, so it’s needed to find texture feature extraction method that is invariant towards illumination. Shape feature also needed in this study because can represent characteristics of microscopic blood image.This study proposes combination of texture feature that is illumination invariant and shape feature for ALL detection. Texture feature will be extracted using Complete Robust Local Binary Pattern (CRLBP) method and will be tested on microscopic blood image dataset named ALL_IDB1. Testing will be conducted by using various combination of different texture feature and shape feature. Combination of shape feature and CRLBP is perform better than others. In indvidual cell test, highest result using SVM Linear with accuracy 90.89%, sensitivity 94.24% and specificity 64.82%. Classification using ALL image reach accuracy 88.00 %, sensitivity 82.35% and specificity 100%.Keywords: Acute Lymphoblastic Leukemia detection, Complete Robust Local Bianry Pattern, Local Binary Pattern, shape feature, texture feature. Abstrak. Deteksi dengan citra mikroskopik sel darah dapat membantu untuk deteksi dini Accute Lymphoblastic Leukemia (ALL). Namun, proses akuisisi citra mikroskopik dengan variasi pencahayaan yang berbeda menyebabkan iluminasi citra menjadi beragam sehingga dibutuhkan metode yang dapat mengekstraksi fitur tekstur yang invariant terhadap iluminasi. Fitur bentuk juga dibutuhkan dalam penelitian ini karena dapat merepresentasikan perbedaan pada citra mikroskopik sel darah. Penelitian ini mengusulkan penggabungan fitur tekstur yang invariant terhadap iluminasi dan fitur bentuk untuk deteksi dini ALL. Fitur tekstur akan diekstraksi dengan menggunakan metode Complete Robust Local Binary Pattern (CRLBP) dan diuji coba pada dataset ALL_IDB1. Uji coba dilakukan dengan variasi penggabungan fitur bentuk dan fitur tekstur. Penggabungan fitur bentuk dan CRLBP merupakan kombinasi fitur dengan performansi paling baik. Pada pengujian sel tunggal memberikan hasil tertinggi pada klasifikasi SVM Linear dengan akurasi 90,89%, sensitifitas 94,24% dan sepesifisitas 64,82%. Pada klasifikasi citra ALL akurasi mencapai 88,00%, dengan sensitifitas 82,35% dan spesifisitas 100%.Kata Kunci: Complete Robust Local Binary Pattern, deteksi Acute Lymphoblastic Leukemia, Local Binary Pattern, fitur bentuk, fitur tekstur
Kombinasi Fitur Bentuk, Warna dan Tekstur untuk Identifikasi Kesuburan Telur Ayam Kampung Sebelum Inkubasi Dijaya, Rohman; Suciati, Nanik; Herumurti, Darlis
Jurnal Buana Informatika Vol 7, No 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (428.984 KB) | DOI: 10.24002/jbi.v7i3.659

Abstract

Abstract. In the chicken nursery industry (doc) hatching efficiency is obtained by observing the eggs through candling before the incubation process. To sort out infertile eggs the use of fertility image identification thought egg candling is needed before incubation. The focus of this study is to combine the features of shape, texture and color to the area and egg yolk to determine the most dominant features in the image representing firtile egg candling. Features used in this study are the feature of forms: roundness, elongation, Index, Ellips Varriance and Circularity Ratio, moment invariant texture features of the area and the egg yolk, and features HSI color in egg yolks area. The test results show that the highest accuracy is on the features of the new forms of egg yolk with an accuracy of 76.67%. The second highest is shown by the combination of form features (Circularity Ratio, Ellips Varriance) and texture features in the area moment yolk color features HSI with 81.67% accuracy using SVM classification method.Keywords: Egg candling imagery, fertile, infertile, incubation Abstrak. Pada industri pembibitan ayam (doc) efisiensi penetasan telur ayam didapatkan dengan melakukan candling (peneropongan telur) sebelum proses inkubasi menggunakan mesin tetas. Untuk mengklasifikasikan telur fertile dan infertile dibutuhkan identifikasi kesuburan telur menggunakan citra candling sebelum inkubasi. Fokus dari penelitian ini adalah mengkombinasikan fitur bentuk, tekstur dan warna pada area kuning telur dan telur untuk mengetahui fitur yang paling dominan dalam merepresentasikan citra candling telur ayam kampung. Fitur yang digunakan dalam penelitian ini adalah fitur bentuk (Roundness, Elongation, Index, Ellips Varriance dan Circularity Ratio), fitur tektur moment invarian dari area telur dan kuning telur dan fitur warna HSI pada area kuning telur. Hasil pengujian menunjukkan akurasi tertinggi pada fitur bentuk kuning telur baru dengan akurasi 76,67% dan kombinasi fitur bentuk (Circularity Ratio, Ellips Varriance), fitur tekstur moment pada area kuning telur dengan fitur warna HSI dengan akurasi 81,67 % menggunakan metode klasifikasi SVM. Kata Kunci: Citra candling telur, fertile, infertile, inkubasi.
Penggabungan Fitur Bentuk dan Fitur Tekstur yang Invariant terhadap Rotasi untuk Klasifikasi Citra Pap Smear Pasrun, Yuwanda Purnamasari; Fatichah, Chastine; Suciati, Nanik
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (714.041 KB) | DOI: 10.24002/jbi.v7i1.479

Abstract

Abstract. Pap test is a cervical cancer screening manually and requires a long time that it needs an exact cell classification system based computers. Features determination by observation in characteristic differences between the datasets visually betweenclass will help a cell classification results which has relevant characteristics between classes. In addition, the change in orientation of the cells at the time of the acquisition will affect the value of the generated feature so extraction method that is rotation invariant is needed to overcome that problem. This research proposes the combination of simple shapes feature and the texture feature from extraction Local Binary Pattern Histogram Fourier (LBP-HF) that invariant to rotation as additional features to classify pap smear images. The result show that the proposed feature combination yield good performance with accuracy 92.44% for two category cell and 70.06% for seven class cell.Keywords: classification, lbp-hf,  pap smear image, shape feature.Abstrak. Pap test adalah pemeriksaan kanker serviks secara manual yang membutuhkan waktu yang lama sehingga dibutuhkan sistem klasifikasi sel berbasis komputer yang tepat. Penentuan fitur melalui observasi pada perbedaan ciri antarkelas secara visual pada dataset akan membantu hasil klasifikasi sel untuk mendapatkan ciri yang relevan antarkelas. Selain itu, adanya perubahan orientasi sel pada saat akuisisi akan mempengaruhi nilai fitur yang dihasilkan sehingga dibutuhkan metode ekstraksi fitur yang invariant terhadap rotasi. Penelitian ini mengusulkan penggabungan fitur bentuk sederhana dan fitur tekstur dengan ekstraksi fitur Local Binary Pattern –Histogram Fourier yang invariant terhadap rotasi sebagai ciri tambahan dalam mengklasifikasikan citra pap smear. Hasilnya menunjukkan bahwa kombinasi fitur menghasilkan performa yang baik dengan akurai 92,44% untuk dua kategori sel dan 70,06% untuk tujuh kelas sel.Kata Kunci: klasifikasi, lbp-hf, citra pap smear, fitur bentuk.
PENGENALAN CITRA WAJAH DENGAN VARIASI ILUMINASI MENGGUNAKAN PRA-PEMROSESAN TAN AND TRIGGS DAN METODE KLASIFIKASI ROBUST REGRESSION Puspaningrum, Eva Yulia; Suciati, Nanik; Yuniarti, Anny
SCAN - Jurnal Teknologi Informasi dan Komunikasi Vol 10, No 3 (2015)
Publisher : Universitas Pembangunan Nasional "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/scan.v10i3.621

Abstract

Abstrak. Pengenalan citra wajah dengan variasi iluminasi dianggap sebagai salah satu masalah penting di bidang pengenalan wajah karena variasi yang disebabkan oleh pencahyaan lebih signifikan dari pada ciri fisik wajah individu sendiri. Salah satu pendekatan untuk memecahkan masalah ini  adalah dengan metode klasifikasi Robust Regression. Dalam penelitian ini metode Robust Regression dengan menggunakan teknik pra pemrosesan Tan and Triggs (TT)  dapat menghasilkan kinerja yang cukup handal. Pengujian dilakukan dengan menggunakan 2 basisdata standar yaitu CMU-PIE dan Yale Face B. Berdasarkan uji coba yang dilakukan, penggunaan pra pemrosesan TT pada robust regression menghasilkan tingakat akurasi yang lebih unggul daripada penggunaan pra pemrosesan Histogram Equalization (HE). Pada CMU PIE Face Database pencahayaan frontal dengan pra proses  HE akurasi sebesar 97,30% sedangkan dengan TT akurasi sebesar 97,82%. Pada kondisi pencahayaan ekstrim akurasi yang diperoleh HE sebesar 99,66% sedangkan TT sebesar 100%. Selain itu, dari hasil uji coba database lain yaitu dengan Yale Face Database B 50x50 akurasi menggunakan HE sebesar 84,7 % sedangkan dengan TT sebesar 93,95%.   Kata Kunci: Pengenalan Wajah, Normalisasi Iluminasi, Robust Regression, Tan and Triggs.
Apakah kombinasi power lbp dan fourier descriptor dapat digunakan untuk klasifikasi citra kerang? Devi, Putri Aisyiyah Rakhma; Suciati, Nanik; Khotimah, Wijayanti Nurul
TEKNOLOGI: Jurnal Ilmiah Sistem Informasi Vol 6, No 2 (2016): July
Publisher : Universitas Pesantren Tinggi Darul 'Ulum (Unipdu) Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/teknologi.v6i2.768

Abstract

ABSTRAKPermasalahan pengklasifikasian secara manual biasanya terletak pada hasil akurasi dan waktu klasifikasi. Pengklasifikasi citra kerang pada umumnya dilakukan berdasarkan pada karakteristik bentuk dan tekstur cangkang kerang. Pengembangan perangkat lunak untuk pengklasifikasian secara otomatis diharapkan dapat meningkatkan hasil akurasi dan memperbaiki waktu klasifikasi. Pada penelitian ini bertujuan untuk mengkombinasikan fitur tekstur berbasis metode Power LBP dan fitur bentuk berbasis metode fourier descriptor yang digunakan untuk klasifikasi citra kerang.Citra input yang digunakan, sebelumnya telah melalui praproses dan  segmentasi untuk memisahkan objek dengan background. Citra objek yang sudah terpisah ditransformasi menjadi citra biner dan citra grayscale untuk proses ekstraksi fitur. Hasil dari kedua fitur yang sudah diperoleh akan dilakukan kombinasi dengan mempertimbangkan bobot masing-masing fitur yang kemudian dilakukan normalisasi. Dengan mengkombinasikan fitur tekstur dan fitur bentuk diharapkan memperoleh fitur yang signifikan yang dapat meningkatkan akurasi sebuah klasifikasi.Uji coba dilakukan pada 3 jenis dataset kerang yakni kerang darah, kerang pasir dan kerang bulu dengan menggunakan SVM cross validation dengan k=2 . Hasil uji coba menunjukkan bahwa ada keterkaitan antara mengkombinasikan fitur tekstur dan fitur bentuk pada permasalahan klasifikasi citra kerang dapat diperbaiki dengan hasil akurasi klasifikasi yang diperoleh sebesar 99,39% dengan fitur tekstur lebih dominan daripada fitur yang lainnya. Kata Kunci: citra kerang, ekstraksi fitur, fourier descriptor, klasifikasi, power LBP. ABSTRACTShells image classification are generally conducted based on the characteristics of the shape and texture of the shells. The problems of classification usually occur results of accuracy and timing classification. The software development for classification is expected to increase the yield of accuracy result and optimize the time of classification. In this study, we combine extracting texture features based Power LBP method and extracting shape features based Fourier Descriptor method for shells image classification.   The used input images had been conducted preprocessing  and segmentation to separate object and background using Otsu methods. The objects images that had been separated are transformed into a binary image and grayscale image for feature extraction process. Texture features are extracted using Power LBP (PLBP) method and grayscale image as input. Shape features are extracted using Fourier Descriptor (FD) method and binary image as input. The results of these two features will be combined by considering the weight of each feature and then normalized. Combines texture features and shape features, we expect to obtain significant features that can improve the accuracy of classification.Tests was performed on three types of shells dataset that is blood clams, mussels and scallops feather sand by using SVM cross validation with k = 2 fold. The results show that there is a link between features combine texture and shape features on the image classification problems that can be solved with the results obtained classification accuracy of 99.39% with a texture feature more dominant than the other features. Keywords: classification, feature extraction, Fourier Descriptor , Power LBP, Shellfish image.
Identifying Degree-of-Concern on COVID-19 topics with text classification of Twitters Hasanah, Novrindah Alvi; Suciati, Nanik; Purwitasari, Diana
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 7, No 1 (2021): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v7i1.2234

Abstract

The COVID-19 pandemic has various impacts on changing people’s behavior socially and individually. This study identifies the Degree-of-Concern topic of COVID-19 through citizen conversations on Twitter. It aims to help related parties make policies for developing appropriate emergency response strategies in dealing with changes in people’s behavior due to the pandemic. The object of research is 12,000 data from verified Twitter accounts in Surabaya. The varied nature of Twitter needs to be classified to address specific COVID-19 topics. The first stage of classification is to separate Twitter data into COVID-19 and non-COVID-19. The second stage is to classify the COVID-19 data into seven classes: warnings and suggestions, notification of information, donations, emotional support, seeking help, criticism, and hoaxes. Classification is carried out using a combination of word embedding (Word2Vec and fastText) and deep learning methods (CNN, RNN, and LSTM). The trial was carried out with three scenarios with different numbers of train data for each scenario. The classification results show the highest accuracy is 97.3% and 99.4% for the first and second stage classification obtained from the combination of fastText and LSTM. The results show that the classification of the COVID-19 topic can be used to identify Degree-of-Concern properly. The results of the Degree-of-Concern identification based on the classification can be used as a basis for related parties in making policies to formulate appropriate emergency response strategies in dealing with changes in public behavior due to a pandemic.
Combination of fast hybrid classification and k value optimization in k-nn for video face recognition Septiana, Nuning; Suciati, Nanik
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 6, No 1 (2020): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v6i1.1668

Abstract

Nowadays, the need for face recognition is no longer include images only but also videos. However, there are some challenges associated with the addition of this new technique such as how to determine the right pre-processing, feature extraction, and classification methods to obtain excellent performance. Although nowadays the k-Nearest Neighbor (k-NN) is widely used, high computational costs due to numerous features of the dataset and large amount of training data makes adequate processing difficult. Several studies have been conducted to improve the performance of k-NN using the FHC (Fast Hybrid Classification) method by optimizing the local k values. One of the disadvantages of the FHC Method is that the k value used is still in the default form. Therefore, this research proposes the use of k-NN value optimization methods in FHC, thereby, increasing its accuracy. The Fast Hybrid Classification which combines the k-means clustering with k-NN, groups the training data into several prototypes called TLDS (Two Level Data Structure). Furthermore, two classification levels are applied to label test data, with the first used to determine the n number of prototypes with the same class in the test data. The second classification using the optimized k value in the k-NN method, is employed to sharpen the accuracy, when the same number of prototypes does not reach n. The evaluation results show that this method provides 86% accuracy and time performance of 3.3 seconds.
Kombinasi Fitur Tekstur Local Binary Pattern yang Invariant Terhadap Rotasi dengan Fitur Warna Berbasis Ruang Warna HSV untuk Temu Kembali Citra Kain Tradisional Nasir, Muhamad; Suciati, Nanik; Wijaya, Arya Yudhi
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol 7, No 1 (2017): Jurnal Inspiration Volume 7 Issue 1
Publisher : STMIK AKBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v7i1.2435

Abstract

Salah satu bagian penting dari sistem temu kembali adalah metode ekstraksi ciri. Metode ekstraksi ciri harus invariant terhadap perubahan rotasi, hal ini dikarenakan user sering mamasukkan citra contoh yang berbeda rotasi dengan citra yang ada di database. Pada kasus temu kembali citra kain tradisional, tekstur dan warna merupakan fitur dominan serta karakteristik visual yang penting dalam membedakan antara kain yang satu dengan kain yang lain. Oleh karena itu, pada penelitian ini dikombinasikan fitur tekstur Local Binary Pattern (LBP) yang invariant terhadap rotasi dengan fitur warna dari ruang warna HSV untuk temu kembali citra kain tradisional. Hasil kombinasi fitur tekstur LBP yang invariant terhadap rotasi dengan fitur warna dari ruang warna HSV menghasilkan recall terbaik 100% pada dataset Batik dan 100% pada dataset Songket menggunakan jarak manhattan.
Hybrid Speckle Noise Reduction Method for Abdominal Circumference Segmentation of Fetal Ultrasound Images Fajar Astuti Hermawati; Handayani Tjandrasa; Nanik Suciati
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1211.453 KB) | DOI: 10.11591/ijece.v8i3.pp1747-1757

Abstract

Fetal biometric size such as abdominal circumference (AC) is used to predict fetal weight or gestational age in ultrasound images. The automatic biometric measurement can improve efficiency in the ultrasonography examination workflow. The unclear boundaries of the abdomen image and the speckle noise presence are the challenges for the automated AC measurement techniques. The main problem to improve the accuracy of the automatic AC segmentation is how to remove noise while retaining the boundary features of objects. In this paper, we proposed a hybrid ultrasound image denoising framework which was a combination of spatial-based filtering method and multiresolution based method.  In this technique, an ultrasound image was decomposed into subbands using wavelet transform. A thresholding technique and the anisotropic diffusion method were applied to the detail subbands, at the same time the bilateral filtering modified the approximation subband. The proposed denoising approach had the best performance in the edge preservation level and could improve the accuracy of the abdominal circumference segmentation.
Co-Authors Adhira Riyanti Amanda Adni Navastara, Dini Agus Eko Minarno Agus Priyono Agus Zainal Arifin Agus Zainal Arifin Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Akwila Feliciano Akwila Feliciano Akwila Feliciano Pradiptatmaka Alam Ar Raad Stone Aldinata Rizky Revanda Altriska Izzati Khairunnisa Hermawan Amelia Devi Putri Ariyanto Amirullah Andi Bramantya Andika Rahman Teja Anny Yuniarti Antonius Kevin Wiguna Ardian Yusuf Wicaksono Ari Wijayanti Aris Fanani Arrie Kurniawardhani Arsy Bilahi Tama Ary Mazharuddin Shiddiqi Arya Yudhi Wijaya Atika Faradina Randa Atikah, Luthfi Avin Maulana Awangditama, Bangun Rizki Ayu Kardina Sukmawati Ayu Septya Maulani Baso, Budiman Bryan Nandriawan Bui, Ngoc Dung Chastine Fatichah Chastine Fatichah Chilyatun Nisa' Damayanti, Putri Daniel Sugianto Darlis Herumurti Davin Masasih Diana Purwitasari Dimas Rahman Oetomo Dini Adni Navastara Dini Adni Navastara, Dini Adni Dion Devara Aryasatya Eko Prasetyo Eva Yulia Puspaningrum Evelyn Sierra Fairuuz Azmi Firas Faishal Azka Jellyanto Faizin, Muhammad 'Arif Fajar Astuti Hermawati Fandy Kuncoro Adianto Fandy Kuncoro Adianto Febri Liantoni, Febri Fiqey Indriati Eka Sari Fitri Bimantoro Ginardi, R.V. Hari Glenaya Gou Koutaki Gurat Adillion, Ilham Hafidz, Abdan Handayani Tjandrasa Handayani Tjandrasa Hani Ramadhan Haq, Arinal Hidayat, Ahmad Nur Hidayati, Shintami Chusnul Hilya Tsaniya Imagine Clara Arabella Imam Kuswardayan Imam Mustafa Kamal Irawan Rahardja, Agustinus Aldi Isye Arieshanti Isye Arieshanti Januar Adi Putra Januar Adi Putra Kautsar, Faiz Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata M. Bahrul Subkhi Maulidan Bagus A.R Maulidiya, Erika Mawaddah, Saniyatul MIFTAHOL ARIFIN, MIFTAHOL Mochammad Zharif Asyam Marzuqi Muchamad Kurniawan Muchamad Kurniawan Muchamad Kurniawan, Muchamad Muhamad Nasir Muhammad 'Arif Faizin Muhammad Alif Satriadhi Muhammad Farih Muhammad Fikri Sunandar Mutmainnah Muchtar Nafa Zulfa Ni Luh Made ITS Novrindah Alvi Hasanah R Dimas Adityo R. Dimas Adityo Rachman, Rudy Rahma Fida Fadhilah Rangga Kusuma Dinata Rangga Kusuma Dinata Rayssa Ravelia Rizal A Saputra Rizal A Saputra, Rizal A Rohman Dijaya Romario Wijaya Safhira Maharani Safhira Maharani Salim Bin Usman Salim Bin Usman Salsabiil Hasanah Sarimuddin, Sarimuddin Septiana, Nuning Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shintami Chusnul Hidayati Shofiya Syidada Sjahrunnisa, Anita Suastika Yulia Riska Sugianela, Yuna Surya Fadli Alamsyah Syavira Tiara Zulkarnain Tanzilal Mustaqim Tiara Anggita Tiara Anggita Tsaniya, Hilya Wahyu Saputra, Vriza Wan Sabrina Mayzura Wibowo, Della Aulia Wicaksono, Farhan Wijayanti Nurul Khotimah Yulia Niza Yulia Niza Yuna Sugianela Yuna Sugianela Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas