p-Index From 2021 - 2026
22.28
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Sains dan Teknologi TELKOMNIKA (Telecommunication Computing Electronics and Control) CESS (Journal of Computer Engineering, System and Science) Proceeding of the Electrical Engineering Computer Science and Informatics JOIN (Jurnal Online Informatika) SISFOTENIKA JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Jurnal Mantik Penusa JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI ILKOM Jurnal Ilmiah Jiko (Jurnal Informatika dan komputer) JSiI (Jurnal Sistem Informasi) Jurnal Pengembangan Riset dan Observasi Teknik Informatika JURIKOM (Jurnal Riset Komputer) Jurnal Riset Informatika JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol Building of Informatics, Technology and Science Jurnal Mantik Aisyah Journal of Informatics and Electrical Engineering INTI Nusa Mandiri Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Teknik Informatika C.I.T. Medicom Journal of Intelligent Decision Support System (IDSS) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) Jurnal Teknik Informatika (JUTIF) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) RESOLUSI : REKAYASA TEKNIK INFORMATIKA DAN INFORMASI JPM: JURNAL PENGABDIAN MASYARAKAT Journal La Multiapp KLIK: Kajian Ilmiah Informatika dan Komputer International Journal of Basic and Applied Science JUSTIN (Jurnal Sistem dan Teknologi Informasi) PROSISKO : Jurnal Pengembangan Riset dan observasi Rekayasa Sistem Komputer SAGA: Journal of Technology and Information Systems Journal International Journal of Teaching and Learning (INJOTEL) INTERNATIONAL JOURNAL OF SOCIETY REVIEWS (INJOSER) Journal of Blockchain, Nfts and Metaverse Technology
Claim Missing Document
Check
Articles

Implementasi Sistem Informasi Rekam Medis Berbasis Web Klinik Gigi menggunakan Metode Waterfall dan PIECES Framework Kartika Salma Nadhiva; Agung Triayudi; Endah Tri Esti Handayani
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 10, No 1 (2022)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.317 KB) | DOI: 10.26418/justin.v10i1.50997

Abstract

Klinik Chic Orthodontic Center adalah klinik gigi yang terletak di Jalan Raya Kota Bogor Km 20, Kramat Jati, Kecamatan Kramat Jati, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta. Pengolahan data rekam medis pada Klinik Chic Orthodontic Center dilakukan manual, sehingga menyebabkan proses kebutuhan data memakan waktu yang lama. Analisis dan perancangan sistem menggunakan metode Waterfall yang memiliki tahapan analisis, desain, implementasi, pengujian, penyebaran, dan pemeliharaan. Adapun metode PIECES yang digunakan untuk menilai sistem dari segi performa, informasi, ekonomi, kontrol, efisiensi, dan pelayanan. Sistem diuji dengan melibatkan 40 pengguna diantaranya 10 dokter dan 30 petugas sebagai responden. Hasil analisis diolah menggunakan metode PIECES Framework yang dapat disimpulkan bahwa 4,16 dari variabel performa, 4,07 variabel informasi, 3,93 variabel ekonomi, 3,99 variabel kontrol, 4,31 variabel efisiensi, dan 4,35 variabel pelayanan. Dari hasil tersebut semua variabel PIECES mendapatkan kategori PUAS. Tujuan dilakukan penelitian ini guna mengimplementasikan metode Waterfall dan PIECES Framework dalam membangun sebuah sistem informasi berbasis web untuk mempermudah petugas dan dokter dalam memproses laporan data pasien. Hasil dari penelitian ini berupa laporan data pasien, laporan data dokter, laporan data petugas, laporan pembayaran, dan laporan data obat.
Analisa Pieces Framework Pada Rancangan Aplikasi E-Commerce Minyak Beku Berbasis Web Menggunakan Metode Fast Adi Yulianto; Agung Triayudi; Endah Tri Esti Handayani
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 10, No 4 (2022)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v10i4.51125

Abstract

Perkembangan teknologi yang semakin pesat dan berkembang yang memungkinkan beberapa aspek untuk melakukan adaptasi perubahan, termasuk pada perkembangan teknologi pemasaran yang dapat dilakukan secara digitalisasi. Digitalisasi pada pemasarannya dapat bermacam-macam jenisnya untuk melakukan pemasaran salah satunya dapat menggunakan website. Dengan adanya pemasaran melalui website maka dapat mempermudahkan antara penjual dan pembeli dalam melakukan transaksi agar lebih mudah dan lebih modern dalam mengikuti perkembangan teknologi saat ini. Dalam kasus ini penulis menggunakan contoh pada “Ogay Minyak Beku”, yang melakukan transaksi pembelian dan pemasaran masih menggunakan media konvensional dengan cara melakukan penjual melalui personal chat. Tujuan dari penelitian ini dapat membantu pemasaran melalui website dan meningkatkan minat pembeli. Metode pengembangan aplikasi ini menggunakan metode Framework for the Application of System Thinking (FAST) dan metode Pieces Framework sebagai analisa kepuasan aplikasi. Hasil dari penelitian ini dapat menghasilkan layanan yang berbasis website yang dapat memudahkan penjual dan pembeli dan memudahkan penjual dalam melakukan pemasaran.
Penerapan Data Mining Untuk Klasifikasi Penerima Dana Bantuan Sosial Dengan Menggunakan Algoritma K-Nearest Neighbor Agung Triayudi
Building of Informatics, Technology and Science (BITS) Vol 5 No 2 (2023): September 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i2.3972

Abstract

The Social Assistance Fund (Bansos) is a government program carried out to assist in eradicating community poverty in Indonesia and improving the welfare of families in Indonesia. Social Assistance Funds (Bansos) are distributed from the central ministry, then forwarded to local social services and then distributed to the community through each sub-district office. After data collection is carried out, the process of determining and selecting the families who receive Social Assistance Funds (Bansos) is carried out. However, in the implementation process there were several obstacles, one of which was that the provision of Social Assistance Funds (Bansos) was still not on target for families who deserved to receive Social Assistance Funds (Bansos). This problem is an important matter that must be resolved, this is because the main aim of the Social Assistance Fund (Bansos) program is to help eradicate poverty in Indonesia. Reviewing and processing data again based on previous data can be completed using one of the computer techniques. Data mining is a technique used to reprocess data. Data processing returns to data mining based on data previously stored in a data collection or data warehouse. Classification is part of data mining which aims to find out certain models of data so that they can be divided into several classes or groups. The K-Nearest Neighbor (K-NN) algorithm is part of a data mining technique which aims to divide data into certain groups. The results obtained in the research are the K value used in the research, namely K=7, the result of the family data grouping process which has just determined that the family received Social Assistance Funds (Bansos).
Sistem Pendukung Keputusan Rekomendasi Objek Wisata Menerapkan Metode MABAC dan Pembobotan ROC Fifto Nugroho; Agung Triayudi; Mesran Mesran
Jurnal Sistem Komputer dan Informatika (JSON) Vol 5, No 1 (2023): September 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i1.6822

Abstract

North Sumatra possesses abundant potential for tourist attractions, yet achieving the optimal selection of these attractions poses a challenge. Therefore, a decision support system is required to aid in the decision-making process for choosing the most suitable tourist attractions. In this study, the Multi Atributive Border Approximation Area Comparison (MABAC) method is employed to rank tourist attractions based on predefined criteria. MABAC combines geometric approaches with boundary approximation area comparison analysis to calculate priority scores for each tourist attraction. Additionally, the Rank Order Centroid (ROC) method is used to assign weights to the identified criteria. This research reveals various issues in the selection of tourist attractions in North Sumatra, such as complex criteria, variations in criteria weights, and insufficient tools to address these challenges. The primary objective of this study is to develop a decision support system capable of assisting stakeholders in selecting tourist attractions aligned with their preferences and objectives. The outcome of this research is the development of an efficient decision support system to aid in the selection of tourist attractions in North Sumatra. This system reduces subjectivity in decision-making, provides more accurate ranking based on established criteria, and assists stakeholders in understanding the process of selecting tourist attractions in a more transparent manner. The implications of this research include enhancing the quality of decision-making in the tourism industry and optimizing the utilization of tourist attraction potential in North Sumatra. As for the tourism recommendation with the highest rank, alternative 3 is obtained with a value of 0.6343, namely Paropo natural tourism.
Penentuan Mahasiswa Berprestasi dengan Menerapkan Metode Multi Attribute Utility Theory (MAUT) Wulan Kartika Murti; Agung Triayudi; Mesran Mesran
Jurnal Sistem Komputer dan Informatika (JSON) Vol 5, No 1 (2023): September 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i1.6823

Abstract

Being an outstanding student in higher education is certainly a positive and proud thing. Where national education aims to develop the potential of students, in order to become educated, creative students and become democratic and responsible citizens. In determining outstanding students, there are several criteria that must be met by each student as a condition for determining outstanding students. The problem that occurs is that sometimes there are obstacles when assessing the criteria set for each prospective participant. To help the evaluation team in determining outstanding students, a decision support system is needed, sometimes experiencing obstacles when assessing the criteria set for each candidate. In the assessment carried out directly there are prospective candidates who do not meet the criteria standards but excel in other criteria. The Multi Attribute Utility Theory (MAUT) method is a quantitative comparison method used to convert several interests into numerical values on a scale of 0-1 with 0 representing the worst value and 1 the best value. The result of this research is a student determination decision that has the highest score value, namely Netralman (A1) with a utility value of 0.462.
Implementasi Data Mining dengan Algoritma Apriori dalam Menentukan Pola Pembelian Aksesoris Laptop Gatot Soepriyono; Agung Triayudi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 4 (2023): Oktober 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i4.6555

Abstract

Consumer purchasing patterns are an important factor in the business world, which influences marketing strategies, stock management and company profits. In the context of the laptop accessories business, a deep understanding of consumer purchasing patterns is very necessary to increase operational efficiency and customer satisfaction. Data mining, as a powerful data analysis method, has become an effective tool in uncovering these patterns. One of the data mining algorithms that is often used to analyze association patterns is the Apriori algorithm. This research applies the Apriori algorithm to identify and analyze purchasing patterns for laptop accessories from transaction data obtained from a retail store. By analyzing this data, we can identify items that are frequently purchased together and purchasing patterns that may not be immediately apparent to humans. The results of this analysis provide valuable insight into consumer preferences, helping retail stores to design more effective marketing strategies. The results of this research can also be used to manage stock more efficiently. By knowing deeper purchasing patterns, retail stores can predict stock needs more accurately, reduce the risk of excess inventory, and optimize operational expenses. Thus, this research can help increase company profits and satisfy customers by providing accessories that suit their preferences. In the increasingly developing information era, the use of data mining and algorithms such as Apriori is becoming increasingly important. This research is an example of how data analysis can be used in the real world to support smarter and more efficient decision making in the laptop accessories business. As a result, a better understanding of consumer behavior and purchasing patterns can provide a strong foundation for developing successful business strategies.
Perbandingan Kinerja Algoritma Clustering Data Mining Untuk Prediksi Harga Saham Pada Reksadana dengan Davies Bouldin Index Gatot Soepriyono; Agung Triayudi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 4 (2023): Oktober 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i4.6623

Abstract

Mutual funds are a container that can be used to accommodate funds from the public which will later be distributed to the owners of the company. The ease of investing in share prices cannot be separated from the ease of obtaining information. The share price that is very popular with the public is the share price for banks, whether privately owned or government owned. However, even though banks are very close and popular with capital market players, this does not rule out the possibility of a decline in share prices. This problem is not a problem that can be considered trivial and ignored, if you continuously experience losses from the capital market it will certainly give rise to distrust or a lack of interest in the public to participate in investing in companies. Predictions for stock prices must be done well and correctly and get accurate results, therefore it is necessary to use a special technique or method to help carry out the prediction process until results are obtained with a good level of accuracy. The expected prediction process is in line with the concept of data mining. The process of applying clustering for predictions is also considered very suitable, this is because in stock prices there is no target class for each data. The K-Means algorithm and K-Medoids algorithm are part of cluster data mining to be used to make predictions based on cluster formation. The purpose of the comparison is to get more reliable results, where these results can be seen from better algorithm performance. The performance measurement process for the K-Means and K-Medoids algorithms will later be assessed based on the Davies Bouldin Index (DBI). The results of the research show that the performance results of the K-Means algorithm are better than the K-Medoids algorithm. This is proven by the DBI value obtained from the K-Means algorithm being no more than 0.6, while in the K-Medoids algorithm the DBI value obtained is up to 5.822. Overall, each stock data has an optimal cluster based on the clustering process with the K-Means algorithm. The optimal cluster results in BMRI stock data, the optimal cluster is at K=4 with a DBI value of 0.501. In the BBNI stock data, the optimal cluster is at K=4 with a DBI value of 0.500. In the BBCA stock data, the optimal cluster is at K=3 with a DBI value of 0.441. In the BNGA stock data, the optimal cluster is at K=2 with a DBI value of 0.263. In the BDMN stock data the optimal cluster is at K=2 with a DBI value of 0.028 and in the MEGA stock data the optimal cluster is at K=4 with a DBI value of 0.353.
Point of Sales Menggunakan Metode Agile Development pada Bengkel Mandala Motor Andriansyah Utomo; Agung Triayudi; Ira Diana Sholihati
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 7 No 3 (2023): JULY-SEPTEMBER 2023
Publisher : KITA Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v7i3.902

Abstract

The development of the current Point of Sales (POS) system is very important for industry, especially for trading efforts, many business industries use digital recording or data collection systems. Mandala Motor Workshop is company engaged in the automotive sector, providing repair services and selling spare parts for two-wheeled vehicles. At this time the sales system that runs at the Mandala Motor Workshop is still manual in making business records, there are often mistakes when dividing the entire payment, there’s no recording of client information, recording inventory of goods written on paper notes, resulting risk of loss and inefficiency. Point of Sales (POS) is system can help the marketing business process of mandala motor repair shop. Each Point of Sales consists of hardware and applications, these 2 parts used for running business process. System design using Agile Development Method has six stages consisting of planning, implementation, testing, documentation, deployment, and maintenance. Aimed assisting management in checking marketing reports directly, making easier for industry to carry out marketing business, inventory, client information and producing good communication for companies, employees, clients. This application has also been evaluated using the Software Usability Scale (SUS) method, where the average of 200 respondents, namely 76.6%, is included in the acceptable application acceptance level category, the grade level category is in position C, and the adjective rating category be in position. acceptable so that it can be concluded that the application is suitable for use by users and has been fulfilled.
PUBLIC’S SENTIMENT ANALYSIS ON SHOPEE-FOOD SERVICE USING LEXICON-BASED AND SUPPORT VECTOR MACHINE Shafira Shalehanny; Agung Triayudi; Endah Tri Esti Handayani
Jurnal Riset Informatika Vol. 4 No. 1 (2021): December 2021
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (983.013 KB) | DOI: 10.34288/jri.v4i1.129

Abstract

Technology field following how era keep evolving. Social media already on everyone’s daily life and being a place for writing their opinion, either review or response for product and service that already being used. Twitter are one of popular social media on Indonesia, according to Statista data it reach 17.55 million users. For online business sector, knowing sentiment score are really important to stepping up their business. The use of machine learning, NLP (Natural Processing Language), and text mining for knowing the real meaning of opinion words given by customer called sentiment analysis. Two methods are using for data testing, the first is Lexicon Based and the second is Support Vector Machine (SVM). Data source that used for sentiment analyst are from keyword ‘ShopeeFood’ and ‘syopifud’. The result of analysis giving accuracy score 87%, precision score 81%, recall score 75%, and f1-score 78%.
ANALYSIS AND DESIGN OF MOBILE WEB-BASED MENU E-ORDER SYSTEMS USING THE PIECES METHOD (CASE STUDY: CAFÉ 50/50 COFFEE) Nabilah Ananda Pratiwi; Agung Triayudi; Endah Tri Esti Handayani
Jurnal Riset Informatika Vol. 4 No. 1 (2021): December 2021
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (944.14 KB) | DOI: 10.34288/jri.v4i1.134

Abstract

Café as a place to relax or chatter where visitors can order the menu available. In general, a café often has difficulty in serving customers, especially for menu ordering facilities. This is also experienced by café 50/50 Coffee which still makes menu reservations manually. Based on these problems, a system of e-order menus of web-based mobile applications is designed. The study aims to produce a mobile web ordering system that is then analyzed with the PIECES indicator to determine the level of user satisfaction. Design of this system using the waterfall model System Development Life Cycle (SDLC) development method and then analyzed the level of user satisfaction with the PIECES method. System testing uses usability testing with the USE Questionnaire method. System implementations are created with the help of the CodeIgniter framework and use the PHP programming language. The results of the study in the form of a menu e-order system at the 50/50 Coffee café with the conclusion of the analysis that the users of the e-order system were “SATISFIED”. Keywords: , , , ,
Co-Authors ., Hervian AAN SETIAWAN Abdul Azis Abdul Aziz Hasibuan Abdulah, Muhamad Biyan Aceng Supriyadi Achmad Syaifudin Rodhi Achmad Syirod Ade Muhammad Nur Fauzi Adi Firman Ari Saputra Adi Yulianto Aditya lutfi Irawan Afid Rozaqi Afiyan Nur Chafidin Afrasim Yusta Afriany, Joli Agung Rahmad Fadjar Agus Iskandar Agus Iskandar Agus Iskandar Ahmad Arief Fadila Ahmad Avivanto Ahmad Rizki Firdaus Aji Juliana Akhmad Primulyana Albaar Rubhasy Albaar Rubhasy Aldi Andres Ardiansah Aldya Bagas Prahastyo Alfian Muhharam Ali Rahman Alisa Fitriyani Alisya Mutia Mantika Alvian Nur Efendi Ananda Sustantiara Andarweni, Dhea Andreas Gerhard Simorangkir Andrianingsih Andrianingsih Andriansyah Utomo Anggita Putri Maharani Anhar Hawari Anharudin Anharudin apiek maniek Ardinsah Ardinsah Ardiyanto Wantudi Arie Gunawan Ariel Cahyono Arika Zuraidah Aris Gunaryati Artamevia, Zahrach Arya Dimas Setiadi Arya Sastranegara Astri Pertiwi Atikah Suhaimah Baldhan Difa Ben Rahman Benrahman Bernardito Jordan Cahya, Nilam Candra Kurniawan Chafidin, Afiyan Nur Chuy Mandala Putra Cintya Damayanti Dandi Putra Daud Iswandii Della Diniyati Deny Hidayatullah Dewi Janetta Az Zahra Dhea Andarweni Dhieka Avrilia Lantana Dian Yunita Sihombing Dicke Rifki Fajrin Dimas Aryanto Wijaya Diniyati, Della Diranisha, Virly Djamaludin, Muhammad Ariel Dwi Auditira Dwi Ifan Ramadhan Dwi Juliastuti Dwika Assrani Dwina Pri Indini Dwiyatno, Saleh Dzahabi Yunas, Rio Al E, Endah Tri Efendi, Alvian Nur Eka Febriyanto Riski Eka Permana Putra Endah Tri Eshti Handayani Endah Tri Esti Handayani Endah Tri Esti Handayani Eri Mardiani Eri Mardiani Eri Mardiani Fachid, Syakirah Fadhil Muhammad Supriyanto Fadillah, Rizkah Faiq Husain Pratama Faizal Kurniawan Fajar Setiawan Hidayat Fajhar Muhammad Fajrin, Dicke Rifki Faran, Jhiro Fardila Inastiana Fatha Alsidqi Husaini Fathiya Zahra, Hawra Ferina Gunawan Fifto Nugroho Fikar Wahyu Tyas Tono Fikri Fajar Asshiddiqi Fikrianzi Nindyo Kusumo Fildzah Fildzah Firzatullah, Raden Muhamad Flipo Hariski Frankly Sept Genius Zendrato Gatot Soepriyono Genius Zendrato, Frankly Sept Ghulam Prasetyo Utomo Hadi Ansyah Hakam, Muhammad Aulia Haris Triono Sigit Hasibuan, Abdul Aziz Hervian . Heryanto, Yayan Hidayat, Fajar Setiawan Hilman, Hilman Fikri Wijaya Hoga Saragih Ibnu Nur Khawarizmi Ikbal Danu Setiawan Iksal Iksal Iksal Iksal Imam Rizqi Imanuel Sinuraya Inastiana, Fardila indrawan indrawan ingsih, Andrian Ira Diana Sholihati Ira Diana Sholihati Ira Diana Solihati Ira Diana Solihati Iskandar Fitri Ismi Naili Qurrotul Aini Ismia Iwandini Jhiro Faran Juliana, Aji Jumpa Dorisman Rajagukguk Junior, Reza Phahlevi Kabeleke Melanesia L Kartika Salma Nadhiva Karyaningsih, Dentik Kiai Agus Priyaharto Mulia I Kodim Suparman Kusumaningtyas, Grasiella Yustika Rezka Talita Latif Arif Anggoro lia kamelia Lili Dwi Yulianto Listrina Turnip Ma'arif, Ridwan Ahmad Made Yoga Mahardika Mardiani, Eri Mauludani Muhammad Melati Indah Petiwi Melisa Theresia Mesran, Mesran Moh Dani Ariawan Muhamad Biyan Abdulah, Muhammad Andhika Maulana Muhammad Ariel Djamaludin Muhammad Aulia Hakam Muhammad Fadli Muhammad Faisal Abdillah Muhammad Faizal Muhammad Farhan Adistyra Muhammad Ilyas Sahputra Muhammad Jordy Muhammad Prabowo Chaniago Muhammad Rafi Fadhilah Muhammad Rizki Wardhana Muhammad Rizki Zidan Muhammad Rizky Hamdan Mutiara Mala Khairunnisa Nabilah Ananda Pratiwi Nadia Putri Ariyanti Nanda Fathi Rizky Nesha Putri Pratama Nifea Kusumawardhani Nofrisa, Dini Novi Dian Nathasia Novi Dian Nathasia Nur Hayati Nur Hayati Nur Hayati Nur Iskandar Zulkarnaen Nurfatanah Nurfatanah Nurfazriah Attamami Nurhadiyan, Thoha Oktaviani oktaviani Oktaviani Oktaviani Oky Triadi Sampurno Panjaitan, Fricia Oktaviani Penny Hendriyati Putra Dama Ramadhan Raffi Dima Sampurno Rafi Syahputra Rahmat Aji Santoso Raihan Abdi Negoro Rais Rabtsani, Muhamad Raka Alvianda Rama Setiawan Ramadhan, Duta Pramudya Ratih Mardianti Ratih Titi Komala Sari Ratih Titi Komalasari Repi, Viktor Vekky Ronald Resha Anjariansyah Reynaldo, Yohanes Reza Phahlevi Junior Riad Sahara Rian Aditia Rian Rasyidhi Rian Tineges Rian, Rian Hidayat Ricky Andri Widayat Riefand Fadhlurrohman Rifki Nur Apriyono Rima Tamara Aldisa Rima Tamara Aldisa Rima Tamara Aldisa Rio Al Dzahabi Yunas Ripin, Muhamad Riska Setiawati Riska Susilawati Rivaldi Okta Pratama Rizal Bagus Pambudi Rizal Toha, Muhammad Rizki Kurnia Rizky Setiawan Rodhi, Achmad Syaifudin Rosaima Situmorang Rosalina, Vidila Rudi Adityawan Sahputra, Muhammad Ilyas Sampurno, Raffi Dima Saragih, Nova Sari Ningsih Sawindri, Sawindri sawindri Seanand Sonia Shabrilianti Setiawan, Ikbal Danu Setiawati, Riska Setiono, Aji Shafira Shalehanny Shintia Mutiarani Sholihati, Ira Diana Simanjuntak, Handayani Simanungkalit, Racquel Terranova Singgih Yulianto Bastian Siti Nurhalizah Soepriyono, Gatot Solihati, Ira Diana Suginam Sugitha, I Kadek Agga Suhaimah, Atikah Suherman Suherman Sultana Namira Sumiati Sumiati Sumiati Sumiati Sumiati Sumiati Sumiati, Sumiati Suparman, Kodim Susilawati . Susilawati, Riska Sussolaikah, Kelik Syabana, Ulwi Syafrida Hafni Sahir Syavira Cahyaningsih Syirod, Achmad Thoha Nurhadiyan Titih Aji Kurniawan Titik Abdul Rahman Tiyas Asih Qurnia Putri Tobby Wiratama Putra Tyas Tono, Fikar Wahyu Untoroseto, Dedi Utami, Yulianti Pratiwi Vendy Blessing Gulo Vidila Rosalina Vivimaryati Vivimaryati Vivimaryati, Vivimaryati Wahid Al Jufri Wahyu Oktri Widyarto Wardhana, Muhammad Rizki Wibowo, Adhitya Eka WINARSIH Winarsih Winarsih Winarsih Winarsih Winarsih Winda Antika Putri Wiratama Putra, Tobby Wulan Kartika Murti Wulan Widhari Wulandari, Faras Tira Yana Tania Haryanto Yandi Makmur Yani Sugiyani Yanto Murnihati Waruwu Yohanes Reynaldo Yulianti Pratiwi Utami Yunan Fauzi Wijaya Zahrach Artamevia Zuraidah, Arika