p-Index From 2021 - 2026
22.28
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Sains dan Teknologi TELKOMNIKA (Telecommunication Computing Electronics and Control) CESS (Journal of Computer Engineering, System and Science) Proceeding of the Electrical Engineering Computer Science and Informatics JOIN (Jurnal Online Informatika) SISFOTENIKA JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri Jurnal Mantik Penusa JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI ILKOM Jurnal Ilmiah Jiko (Jurnal Informatika dan komputer) JSiI (Jurnal Sistem Informasi) Jurnal Pengembangan Riset dan Observasi Teknik Informatika JURIKOM (Jurnal Riset Komputer) Jurnal Riset Informatika JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol Building of Informatics, Technology and Science Jurnal Mantik Aisyah Journal of Informatics and Electrical Engineering INTI Nusa Mandiri Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Teknik Informatika C.I.T. Medicom Journal of Intelligent Decision Support System (IDSS) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) Jurnal Teknik Informatika (JUTIF) Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) RESOLUSI : REKAYASA TEKNIK INFORMATIKA DAN INFORMASI JPM: JURNAL PENGABDIAN MASYARAKAT Journal La Multiapp KLIK: Kajian Ilmiah Informatika dan Komputer International Journal of Basic and Applied Science JUSTIN (Jurnal Sistem dan Teknologi Informasi) PROSISKO : Jurnal Pengembangan Riset dan observasi Rekayasa Sistem Komputer SAGA: Journal of Technology and Information Systems Journal International Journal of Teaching and Learning (INJOTEL) INTERNATIONAL JOURNAL OF SOCIETY REVIEWS (INJOSER) Journal of Blockchain, Nfts and Metaverse Technology
Claim Missing Document
Check
Articles

Penerapan Artificial Intelligence Untuk Klasifikasi Penyakit Kulit Dengan Metode Convolutional Neural Network Berbasis Web Dimas Aryanto Wijaya; Agung Triayudi; Arie Gunawan
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3519

Abstract

Skin is one of the human organs that functions to regulate body temperature in humans, as well as to protect all organs in the human body. There are many factors that affect skin health conditions that cause skin diseases. A system was developed to help people detect skin diseases. This system is Artificial Intelligence with Convolutional Neural Network method so that it will produce a very significant image. The network will be trained to find angles, edges, shapes, and also features. The results of system performance in this study using adam optimizer with a learning rate of 0.0001 get the highest value of data accuracy reaching a value of 97%. So that the identification of skin diseases is quite good.
Komparasi Metode Weighted Product (WP) Dan Simple Additive Weighting (SAW) Pada Sistem Pendukung Keputusan Dalam Menentukan Pembangunan Infrastruktur Kelurahan Flipo Hariski; Agung Triayudi; Gatot Soepriyono
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3520

Abstract

The goverment gives urban villages more power includes urban village development. In accordance with local village goverment policies, there are specific criteria for allocating funds for village infrastructure development. The aim is to make the development of urban village infrastructure more equitable and targeted. Priorities for urban village infrastructure development must be decided. Decisions on urban infrastructure development are still made by voting and voting and often more significant developments have to be postponed due to losing votes. To prioritizes urban infrastructure development, urban village officials can use decision support system. Prioritization of urban village infrastructure development is determined using Simple Additive Weight (SAW) and Product weightn(WP) methodologies. Each proposal will be assessed according to the criteria chosen by the Kelurahan to determine development priorities. It is expected that the decision support system will be easier, more accurate, and faster in determining development priorities in Rangkapan jaya urban village. Comparison of SAW and WP methods using 10 alternative data, shows that both methods get accurate data and are suitable when applied as ranking of infrastructure development.
Face Mask Recognition Menggunakan Model CNN (Convolutional Neural Network) Berbasis Python dan OpenCV Chuy Mandala Putra; Agung Triayudi; Sari Ningsih
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3532

Abstract

During the COVID-19 pandemic, masks are one of the main measuring tools in carrying out health protocols, masks are also a top priority when carrying out activities outside the home or office. Because masks are quite effective in filtering out disease particles that allow users not to get infected. Therefore, many places have made masks an important requirement in maintaining health protocols during the COVID-19 pandemic. Previously there was a system that had been created to assist the government in implementing the mandatory wearing of masks, but there were still deficiencies. Therefore the authors created a system to detect mask wearing by updating previous researchers using the convolutional neural network (CNN) algorithm. For making this system the author uses the PYTHON and OPENCV programming languages. which will produce four parts in this detection, namely Mask, No Mask, Covered Mouth Chin and Covered Nose Mouth.
Perbandingan Algoritma Klasifikasi Data Mining Pada Prediksi Penyakit Diabetes Yunan Fauzi Wijaya; Agung Triayudi
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4614

Abstract

Diabetes is a chronic disease that attacks humans. One of the causes of diabetes in humans is that sugar intake is too high which the body cannot balance due to absorption or activities carried out. Diabetes is often considered a common disease among people, but the impacts caused by this disease are very detrimental to humans. Based on this, it is necessary for everyone to know whether they suffer from diabetes or not. Therefore, this problem must be resolved appropriately, where it is necessary to predict whether someone will have diabetes or not. The prediction process is carried out to determine whether someone has diabetes or not by knowing the patterns or possible symptoms that cause someone to suffer from diabetes. In this research, the pattern formation process is based on data stored in the past collected in a dataset. A dataset is a collection of past data that occurred in fact and was then collected over a certain period of time on a large scale. Data mining is a method used to process data based on collections of past data, whether in datasets or others. In data mining, the data processing process is carried out using various techniques, one of which is the solution technique in data mining is classification. In this research, the Naïve Bayes algorithm, the K-Nearest Neighbor (K-NN) algorithm and the C4.5 algorithm will be used. In the data mining classification process, there are 3 (three) algorithms used, namely Naïve Bayes, K-Nearest Neighbor and C4.5. From the results of the tests that have been carried out, the accuracy performance results for the Naïve Bayes algorithm are 75%, accuracy for the K-Nearest Neighbor algorithm by 80.60% and the C4.5 algorithm by 91.80%. In this case, it indicates that the C4.5 algorithm has better performance compared to other algorithms. Therefore, the pattern results produced by the C4.5 algorithm are used to make predictions about diabetes.
Penerapan Data Mining Pada Prediksi Harga Emas dengan Menggunakan Algoritma Regresi Linear Berganda dan ARIMA Yunan Fauzi Wijaya; Agung Triayudi
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4615

Abstract

The development of life has developed very rapidly at this time, one thing that has quite an important influence is the business processes carried out. Investment is a business that is carried out by all levels and also members of society easily and flexibly. Currently, the investment that is very popular with the public is gold. Gold itself is one of the most sought after precious metals at the moment, apart from being used to beautify oneself, gold can also be used as an investment asset. Based on several factors above, many people invest in gold. Investments made in Gold are not investments that have a short period of time but investments that are made over a fairly long period of time. Investing in Gold is done by buying Gold at a cheap price at the moment and then selling it again when the Gold price has risen. However, in the process that occurs, problems often occur, where the problems that occur are related to the price of gold. Where this problem can be solved by making a prediction. Data mining is used in predictions because the prediction process is carried out using data mining based on data processing. Data mining itself is a technique that is widely used today to assist in the problem solving process. In this research, the solution process was carried out using the Multiple Linear Regression algorithm and also ARIMA. In this research, the research process will be carried out by comparing the Multiple Linear Regression algorithm. Comparison of algorithms aims to obtain the most optimal results from implementing the algorithm. In solving using the Multiple Linear Regression algorithm and ARIMA, these two algorithms can help solve prediction problems by producing optimal results. From the process carried out, the Multiple Linear Regression algorithm has an RMSE value of 4902782.346, while the ARIMA algorithm gets a value of 5876287.332. This indicates that the results of the Multiple Linear Regression algorithm are better than the ARIMA algorithm.
Sistem Pendukung Keputusan Penilaian Calon Supervisor Pada PT.Petnesia Resindo Dengan Metode Simple Additive Weighting (Saw) Triayudi, Agung; Syabana, Ulwi
Jurnal Sistem Informasi Vol 3 (2016)
Publisher : Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.906 KB) | DOI: 10.30656/jsii.v3i0.131

Abstract

Sebagai elemen dalam perusahaan  yang sangat  penting  adalah Sumber Daya Manusia (SDM). Pengelolaan Sumber Daya Manusia dari suatu perusahaan sangat mempengaruhi banyak aspek penentu keberhasilan kinerja dari perusahaan tersebut. Jika kinerja perusahaan dapat terorganisir, maka segala aspek yang ada di dalam perusahaan tersebut dapat berjalan dengan baik. Sebab sumber daya manusia (SDM) merupakan faktor yang berperan penting dalam penentuan keberhasilan sumber daya manusia yaitu karyawan. Sebagai salah satu upaya dalam meningkatkan kualitas karyawan, PT. Petnesia Resindo (PNR) membuat suatu program yang bertujuan membantu dalam peningkatan potensi karyawan agar Sumber Daya Manusia (SDM) yang terdapat di perusahaan tersebut dapat dioptimalkan sesuai dengan yang di harapkan oleh  PT. Petnesia Resindo (PNR). Masalah yang terdapat pada PT. Petnesia Resindo (PNR) tersebut, karena belum adanya aplikasi sistem penilaian calon supervisor yang menggunakan pengukuran bedasarkan aspek dan kriteria-kriteria yang diinginkan serta di capai oleh perusahaan tersebut. Untuk memecahkan masalah di PT. Petnesia Resindo (PNR) dibutuhkan suatu aplikasi sistem pendukung keputusan penilaian calon supervisor yang dapat mengetahui potensi pada setiap karyawan yang ada di perusahaan tersebut secara real dan objektif dengan menggunakan metode Simple Additive Weighting (SAW).
ANALISIS RECENCY FREQUENCY MONETARY DAN K-MEANS CLUSTERING PADA KLINIK GIGI UNTUK MENENTUKAN SEGMENTASI PASIEN Setiono, Aji; Triayudi, Agung; Esti Handayani, Endah Tri
Jurnal Sistem Informasi Vol 10 No 1 (2023)
Publisher : Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30656/jsii.v10i1.5999

Abstract

Dengan semakin berkembangnya persaingan bisnis, agar mendapatkan pasien lebih banyak dan kepuasan pelayanan terhadap pasien, maka perusahaan harus mempunyai strategi. Palapa Dentists belum mengadopsi strategi CRM (Customer Relationship Management) masih memperlakukan semua pasien dengan pendekatan yang sama. Berdasarkan permasalahan tersebut maka diperlukan data mining menggunakan teknik cluster untuk mengetahui karakteristik setiap pasien. Penelitian ini menggunakan metode RFM (Recency Frequency Monetary) dan K-Means Clustering dengan tujuan menentukan segmentasi pasien dan memilih kelompok pasien mana yang paling menguntungkan bagi perusahaan. Penentuan jumlah cluster menggunakan elbow method yang menghasilkan jumlah cluster terbaik adalah 2. Silhouette score menghasilkan jumlah 2 cluster dengan score 0.6014345457538962. Sedangkan hasil davies-bouldin score menunjukan cluster optimal dengan 3 cluster tapi skornya 0.7500785223208264 masih jauh dari 0. Cluster 1 memiliki 17.413 anggota dan cluster 2 memiliki 2.068 anggota. Cluster 1 memiliki nilai rata-rata recency 641,63, frequency 3,21, dan monetary Rp. 2.424.251,98. Sedangkan cluster 2 memiliki nilai rata-rata recency 286,87, frequency 19,32, dan monetary Rp. 20.087.467,49. Dapat disimpulkan cluster 2 adalah kelompok pasien yang lebih menguntungkan dibandingkan cluster 1. Kata kunci: Customer Relationship Management, Segmentasi, RFM, K-Means Clustering, Cluster
Penerapan Algoritma Hash Based dalam Penemuan Aturan Asosiasi Penjualan Tanaman Hias Triayudi, Agung; Sumiati, Sumiati
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2626

Abstract

Technology is very influential in the world of increasingly fierce business competition so that business people must find strategies to increase sales results in the midst of business competition. Ornamental plant sellers must be smart in managing stock and making strategies in selling ornamental plants. Transaction data can be processed into information needed to increase sales results, one of which can be used as an analysis of the rules of the buyer transaction association in purchasing ornamental plants so that it can be processed and can support decision making on ornamental plant supplies and can assist officers in recommending other ornamental plants to buyers in a cross selling strategy. Knowing the ornamental plants that are often purchased will be a top priority that must be provided so that there is no stock shortage. In this case, data mining is needed to manage sales transaction data for ornamental plants at the Sindy Flower Shop using a Hash Based algorithm. Hash Based Algorithm that can optimally determine the frequent itemset of candidate itemset. In its application in determining the rules for selling associations of ornamental plants by applying a Hash Based algorithm to obtain frequent itemsets for the 3-itemset Dahlia, Empasen and Melati which are a combination of 3-itemset ornamental plants which are prioritized in sales with a support value of 25% and confidence of 60%
Evaluating Text Quality of GPT Engine Davinci-003 and GPT Engine Davinci Generation Using BLEU Score Heryanto, Yayan; Triayudi, Agung
SAGA: Journal of Technology and Information System Vol. 1 No. 4 (2023): November 2023
Publisher : CV. Media Digital Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58905/saga.v1i4.213

Abstract

The improvement of text generation based on language models has witnessed significant progress in the field of natural language processing with the use of Transformer-based language models, such as GPT (Generative Pre-trained Transformer). In this study, we conduct an evaluation of text quality using the BLEU (Bilingual Evaluation Understudy) score for two prominent GPT engines: Davinci-003 and Davinci. We generated questions and answers related to Python from internet sources as input data. The BLEU score comparison revealed that Davinci-003 achieved a higher score of 0.035, while Davinci attained a score of 0.021. Additionally, for the response times, with Davinci demonstrating an average response time of 4.20 seconds, while Davinci-003 exhibited a slightly longer average response time of 6.59 seconds. The decision of whether to use Davinci-003 or Davinci for chatbot development should be made based on the specific project requirements. If prioritizing text quality is paramount, Davinci-003 emerges as the superior choice due to its higher BLEU score. However, if faster response times are of greater importance, Davinci may be the more suitable option. Ultimately, the selection should align with the unique needs and objectives of the chatbot development project.
Application of Sentiment Analysis in the Reshot Method to Improve User Experience of the Hijra Bank Application Ma'arif, Ridwan Ahmad; Triayudi, Agung
SAGA: Journal of Technology and Information System Vol. 2 No. 1 (2024): February 2024
Publisher : CV. Media Digital Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58905/saga.v2i1.240

Abstract

The first stage in simplifying User Experience (UX) using the RESHOT method is Refine the Challenge. This stage is carried out so that design practitioners know the problems or needs of application users through product research. However, the product research methods that can be carried out at this stage are very diverse and require time. This research aims to explain a product research method that can be used by design practitioners easily and quickly, namely the sentiment analysis method with the Naïve Bayes algorithm. Naive Bayes is a classification method based on simple probability. The results of this analysis will be used as a reference for improving UX using the RESHOT method on the Hijra Bank application. The results of product research using sentiment analysis obtained 2711 opinions originating from tweets on Twitter and user reviews of the Hijra Bank application on Google Play. Of the 2711 opinions, 149 had negative sentiment, with the most frequently mentioned opinions being "Customer" and "Data" with an analysis accuracy of 92%. The results of this analysis are converted into a hypothesis, which will later become a reference in designing interfaces using the RESHOT method.
Co-Authors ., Hervian AAN SETIAWAN Abdul Azis Abdul Aziz Hasibuan Abdulah, Muhamad Biyan Aceng Supriyadi Achmad Syaifudin Rodhi Achmad Syirod Ade Muhammad Nur Fauzi Adi Firman Ari Saputra Adi Yulianto Aditya lutfi Irawan Afid Rozaqi Afiyan Nur Chafidin Afrasim Yusta Afriany, Joli Agung Rahmad Fadjar Agus Iskandar Agus Iskandar Agus Iskandar Ahmad Arief Fadila Ahmad Avivanto Ahmad Rizki Firdaus Aji Juliana Akhmad Primulyana Albaar Rubhasy Albaar Rubhasy Aldi Andres Ardiansah Aldya Bagas Prahastyo Alfian Muhharam Ali Rahman Alisa Fitriyani Alisya Mutia Mantika Alvian Nur Efendi Ananda Sustantiara Andarweni, Dhea Andreas Gerhard Simorangkir Andrianingsih Andrianingsih Andriansyah Utomo Anggita Putri Maharani Anhar Hawari Anharudin Anharudin apiek maniek Ardinsah Ardinsah Ardiyanto Wantudi Arie Gunawan Ariel Cahyono Arika Zuraidah Aris Gunaryati Artamevia, Zahrach Arya Dimas Setiadi Arya Sastranegara Astri Pertiwi Atikah Suhaimah Baldhan Difa Ben Rahman Benrahman Bernardito Jordan Cahya, Nilam Candra Kurniawan Chafidin, Afiyan Nur Chuy Mandala Putra Cintya Damayanti Dandi Putra Daud Iswandii Della Diniyati Deny Hidayatullah Dewi Janetta Az Zahra Dhea Andarweni Dhieka Avrilia Lantana Dian Yunita Sihombing Dicke Rifki Fajrin Dimas Aryanto Wijaya Diniyati, Della Diranisha, Virly Djamaludin, Muhammad Ariel Dwi Auditira Dwi Ifan Ramadhan Dwi Juliastuti Dwika Assrani Dwina Pri Indini Dwiyatno, Saleh Dzahabi Yunas, Rio Al E, Endah Tri Efendi, Alvian Nur Eka Febriyanto Riski Eka Permana Putra Endah Tri Eshti Handayani Endah Tri Esti Handayani Endah Tri Esti Handayani Eri Mardiani Eri Mardiani Eri Mardiani Fachid, Syakirah Fadhil Muhammad Supriyanto Fadillah, Rizkah Faiq Husain Pratama Faizal Kurniawan Fajar Setiawan Hidayat Fajhar Muhammad Fajrin, Dicke Rifki Faran, Jhiro Fardila Inastiana Fatha Alsidqi Husaini Fathiya Zahra, Hawra Ferina Gunawan Fifto Nugroho Fikar Wahyu Tyas Tono Fikri Fajar Asshiddiqi Fikrianzi Nindyo Kusumo Fildzah Fildzah Firzatullah, Raden Muhamad Flipo Hariski Frankly Sept Genius Zendrato Gatot Soepriyono Genius Zendrato, Frankly Sept Ghulam Prasetyo Utomo Hadi Ansyah Hakam, Muhammad Aulia Haris Triono Sigit Hasibuan, Abdul Aziz Hervian . Heryanto, Yayan Hidayat, Fajar Setiawan Hilman, Hilman Fikri Wijaya Hoga Saragih Ibnu Nur Khawarizmi Ikbal Danu Setiawan Iksal Iksal Iksal Iksal Imam Rizqi Imanuel Sinuraya Inastiana, Fardila indrawan indrawan ingsih, Andrian Ira Diana Sholihati Ira Diana Sholihati Ira Diana Solihati Ira Diana Solihati Iskandar Fitri Ismi Naili Qurrotul Aini Ismia Iwandini Jhiro Faran Juliana, Aji Jumpa Dorisman Rajagukguk Junior, Reza Phahlevi Kabeleke Melanesia L Kartika Salma Nadhiva Karyaningsih, Dentik Kiai Agus Priyaharto Mulia I Kodim Suparman Kusumaningtyas, Grasiella Yustika Rezka Talita Latif Arif Anggoro lia kamelia Lili Dwi Yulianto Listrina Turnip Ma'arif, Ridwan Ahmad Made Yoga Mahardika Mardiani, Eri Mauludani Muhammad Melati Indah Petiwi Melisa Theresia Mesran, Mesran Moh Dani Ariawan Muhamad Biyan Abdulah, Muhammad Andhika Maulana Muhammad Ariel Djamaludin Muhammad Aulia Hakam Muhammad Fadli Muhammad Faisal Abdillah Muhammad Faizal Muhammad Farhan Adistyra Muhammad Ilyas Sahputra Muhammad Jordy Muhammad Prabowo Chaniago Muhammad Rafi Fadhilah Muhammad Rizki Wardhana Muhammad Rizki Zidan Muhammad Rizky Hamdan Mutiara Mala Khairunnisa Nabilah Ananda Pratiwi Nadia Putri Ariyanti Nanda Fathi Rizky Nesha Putri Pratama Nifea Kusumawardhani Nofrisa, Dini Novi Dian Nathasia Novi Dian Nathasia Nur Hayati Nur Hayati Nur Hayati Nur Iskandar Zulkarnaen Nurfatanah Nurfatanah Nurfazriah Attamami Nurhadiyan, Thoha Oktaviani Oktaviani Oktaviani oktaviani Oky Triadi Sampurno Panjaitan, Fricia Oktaviani Penny Hendriyati Putra Dama Ramadhan Raffi Dima Sampurno Rafi Syahputra Rahmat Aji Santoso Raihan Abdi Negoro Rais Rabtsani, Muhamad Raka Alvianda Rama Setiawan Ramadhan, Duta Pramudya Ratih Mardianti Ratih Titi Komala Sari Ratih Titi Komalasari Repi, Viktor Vekky Ronald Resha Anjariansyah Reynaldo, Yohanes Reza Phahlevi Junior Riad Sahara Rian Aditia Rian Rasyidhi Rian Tineges Rian, Rian Hidayat Ricky Andri Widayat Riefand Fadhlurrohman Rifki Nur Apriyono Rima Tamara Aldisa Rima Tamara Aldisa Rima Tamara Aldisa Rio Al Dzahabi Yunas Ripin, Muhamad Riska Setiawati Riska Susilawati Rivaldi Okta Pratama Rizal Bagus Pambudi Rizal Toha, Muhammad Rizki Kurnia Rizky Setiawan Rodhi, Achmad Syaifudin Rosaima Situmorang Rosalina, Vidila Rudi Adityawan Sahputra, Muhammad Ilyas Sampurno, Raffi Dima Saragih, Nova Sari Ningsih Sawindri, Sawindri sawindri Seanand Sonia Shabrilianti Setiawan, Ikbal Danu Setiawati, Riska Setiono, Aji Shafira Shalehanny Shintia Mutiarani Sholihati, Ira Diana Simanjuntak, Handayani Simanungkalit, Racquel Terranova Singgih Yulianto Bastian Siti Nurhalizah Soepriyono, Gatot Solihati, Ira Diana Suginam Sugitha, I Kadek Agga Suhaimah, Atikah Suherman Suherman Sultana Namira Sumiati Sumiati Sumiati Sumiati Sumiati Sumiati Sumiati, Sumiati Suparman, Kodim Susilawati . Susilawati, Riska Sussolaikah, Kelik Syabana, Ulwi Syafrida Hafni Sahir Syavira Cahyaningsih Syirod, Achmad Thoha Nurhadiyan Titih Aji Kurniawan Titik Abdul Rahman Tiyas Asih Qurnia Putri Tobby Wiratama Putra Tyas Tono, Fikar Wahyu Untoroseto, Dedi Utami, Yulianti Pratiwi Vendy Blessing Gulo Vidila Rosalina Vivimaryati Vivimaryati Vivimaryati, Vivimaryati Wahid Al Jufri Wahyu Oktri Widyarto Wardhana, Muhammad Rizki Wibowo, Adhitya Eka WINARSIH Winarsih Winarsih Winarsih Winarsih Winarsih Winda Antika Putri Wiratama Putra, Tobby Wulan Kartika Murti Wulan Widhari Wulandari, Faras Tira Yana Tania Haryanto Yandi Makmur Yani Sugiyani Yanto Murnihati Waruwu Yohanes Reynaldo Yulianti Pratiwi Utami Yunan Fauzi Wijaya Zahrach Artamevia Zuraidah, Arika