Phishing merupakan salah satu bentuk kejahatan siber yang bertujuan mencuri informasi sensitif melalui metode penipuan, seperti situs web palsu yang menyerupai halaman resmi. Maka diperlukan sistem deteksi yang lebih akurat dan efisien untuk mengidentifikasi ancaman ini. Penelitian ini bertujuan untuk menganalisis penerapan algoritma klasifikasi dalam machine learning guna mendeteksi URL phishing. Algoritma yang digunakan dalam penelitian ini adalah Naïve Bayes, Random Forest, dan Decision Tree, yang diterapkan pada dataset yang dikumpulkan dari berbagai sumber. Dataset ini dianalisis menggunakan fitur berbasis Term Frequency - Inverse Document Frequency (TF-IDF) serta fitur numerik, seperti panjang URL, jumlah angka, karakter khusus, dan keberadaan kata kunci yang sering ditemukan dalam situs phishing. Evaluasi model dilakukan menggunakan metrik akurasi, precision, recall, dan F1-score untuk mengukur efektivitas sistem deteksi yang dikembangkan. Hasil eksperimen menunjukkan bahwa model Random Forest memiliki performa terbaik dengan akurasi mencapai 97,2%, diikuti oleh Decision Tree (96,3%), sementara Naïve Bayes memiliki akurasi lebih rendah (85,3%). Model Random Forest juga memiliki keseimbangan yang baik antara precision dan recall, sehingga lebih andal dalam mendeteksi URL phishing. Penggunaan algoritma Machine Learning terbukti dapat meningkatkan efektivitas deteksi phishing secara signifikan.