Claim Missing Document
Check
Articles

Pengolahan Pati Rumbia menjadi Serbuk Glukosa secara Hidrolisis Enzimatis dengan Variasi Perbandingan Pati dan Air, Suhu Evaporasi, dan Suhu Pengeringan Az’zahrah, Nandyta Rizqi; Dewi, Erwana; Yerizam, Muhammad
Jurnal Teknik Kimia USU Vol. 13 No. 1 (2024): Jurnal Teknik Kimia USU
Publisher : Talenta Publisher (Universitas Sumatera Utara)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jtk.v13i1.13327

Abstract

Glucose is a simple sugar that can be used as an sucrose alternative. Rumbia starch is rich in carbohydrates and abundant in Indonesia, potentially being used as a raw material for the production of glucose powder. The process involves starch hydrolysis, evaporation, and drying. The purpose of this study was to obtain optimal conditions of reducing sugar content, evaporation, and drying temperature based on variations in starch and water ratio (1:3, 1:4, 1:5, and 1:6), evaporation temperature (100 °C and 115 °C), and drying temperature (50 °C, and 70 °C). From this study, the optimal ratio of starch and water was 1:4 with a reduced sugar content of 99,77%. The optimal evaporation temperature was 115 °C, the brix content obtained is 85%, and the optimal drying temperature was 70°C, the water content obtained is 3,60%. Based on SNI of glucose, the glucose powder products meet the standard for water content and ash content. However, only in the ratio of starch and water 1:4 and 1:5, the reducing sugar content met the SNI of glucose.
Preparation of Bioethanol from Pineapple Peel Waste for Blending Pertalite into Alternative Fuel (Gasohol) Ihtifazhuddin, Farhan; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Sumberdaya Alam dan Lingkungan Vol 11, No 2 (2024)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jsal.2024.011.02.1

Abstract

This study aims to obtain bioethanol according to the Indonesian National Standard (SNI) 7390:2012, obtain Gasohol according to the RON (Research Octane Number) standard in Pertalite, and produce alternative fuels that are more environmentally friendly. The bioethanol production process includes hydrolysis, fermentation, distillation, and adsorption, with Saccharomyces cerevisiae to ferment sugar in pineapple skin into ethanol with a content of 59.62% from a 5-day fermentation process with 4% Saccharomyces cerevisiae, 0.5% urea, 0.5% NPK. Bioethanol is then mixed with Pertalite in the composition of E5 (5 ml of bioethanol mixed with 95 ml of Pertalite) to E25 (25 ml of bioethanol mixed with 75 ml of Pertalite), lowering the flash point of the mixture from 29.8°C (E5) to 28.0°C (E25), increasing the density from 0.7239 gr.(cm3)-1 (E5) to 0.7250 gr.(cm3)-1 (E25) and the viscosity from 0.41 cSt (E5) to 0.49 cSt (E25). Still, the octane number (RON) tends to be stable at 91.4-95.6. As a result, the bioethanol content is close to SNI 99.5%, the bioethanol-Pertalite mixture improves several parameters but lowers the flash point, and the E25 mixture meets the RON standard of 95.6 for Pertalite.
Pemanfaatan Limbah Kulit Nanas Menjadi Bioetanol dengan Variasi Konsentrasi Ragi dan Lama Fermentasi Febri Liani Br Simanjuntak; Muhammad Yerizam; Anerasari Meidinariasty
Jurnal Serambi Engineering Vol. 9 No. 4 (2024): Oktober 2024
Publisher : Faculty of Engineering, Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pineapple peel waste can pollute the environment if not properly managed. On the other hand, pineapple peel waste can be used as a raw material for the production of bioethanol. The aim of this study was to evaluate the effect of variations in yeast concentration and the duration of the fermentation process on the bioethanol content of pineapple peel waste. In the fermentation process with variations in yeast concentration of 1.5%, 2% and 4%, the type of yeast used is Saccharomyces cerevisiae, the addition of nutrients in the form of NPK and urea by 0.5% each, as well as variations in the length of fermentation for 4 days, 5 days, 6 days, 7 days and 8 days. This study showed that the bioethanol content obtained was significantly influenced by yeast concentration and fermentation time. The sample with the highest ethanol content was produced with the addition of 4% yeast and fermentation for 5 days, the bioethanol content produced was 59% based on calculations using the standard ethanol curve equation and 57.23% based on analysis using GC-MS.
Penurunan Kadar Ammonia dari Air Limbah Industri Menggunakan Jet Bubble Column dengan Solvent KOH Wan Qori Sri Maulani; Muhammad Zaman; Muhammad Yerizam
JOURNAL OF INDUSTRIAL AND MANUFACTURE ENGINEERING Vol. 8 No. 2 (2024): EDISI NOVEMBER
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jime.v8i2.12490

Abstract

Ammonia merupakan salah satu senyawa yang dihasilkan dari proses industri pembuatan pupuk urea yang bersifat toksik dan berbahaya. Ammonia yang terkandung dalam air limbah dapat berdampak besar terhadap lingkungan dan sekitarnya jika langsung dibuang tanpa pengolahan yang baik terlebih dahulu. Oleh karena itu, diperlukan adanya teknik pengolahan limbah yang menjadi bagian penting untuk menjaga kelestarian lingkungan. Jet Bubble Column merupakan salah satu metode yang dapat diterapkan untuk penurunan kadar ammonia. Tujuan dari penelitian ini adalah untuk menghitung koefisien perpindahan massa dan efisiensi untuk mengurangi kadar ammonia dalam air limbah industri melalui penggunaan udara stripping. Pada penelitian ini akan dilihat pengaruh dari variabel yang akan divariasikan, seperti laju alir udara (6-20 L/menit) dan temperatur (35°C dan 50°C). Kadar ammonia akan dianalisis menggunakan alat spektrofotometer UV-Vis dengan reagen Nessler dan panjang gelombang 460 nm. Hasil penelitian memperlihatkan bahwa peningkatan laju alir udara, temperatur, dan waktu stripping memiliki pengaruh signifikan terhadap nilai koefisien perpindahan massa dan efisiensi penurunan ammonia. Nilai koefisien perpindahan massa (KLa) terbaik diperoleh pada kondisi Qg = 20 L/menit dan T = 50°C yaitu sebesar 0,936 jam-1 dengan efisiensi sebesar 64,58%.
Pembuatan Bioetanol dari Limbah Kulit Nanas untuk Pencampuran Pertalite menjadi Bahan Bakar Alternatif (Gasohol) Ihtifazhuddin, Farhan; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Energi Baru dan Terbarukan Vol 5, No 3 (2024): Oktober 2024
Publisher : Program Studi Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jebt.2024.24136

Abstract

Penelitian ini bertujuan memanfaatkan limbah kulit nanas untuk pembuatan bioetanol dan campurannya dengan bahan bakar Pertalite, menghasilkan bahan bakar alternatif yang lebih ramah lingkungan. Proses produksi bioetanol meliputi hidrolisis, fermentasi, distilasi, dan adsorpsi, dengan ragi Saccharomyces cerevisiae untuk memfermentasi gula dalam kulit nanas menjadi etanol dengan kadar 59,62% dari proses fermentasi 5 hari dengan 4% ragi, 0,5% urea, 0,5% NPK. Bioetanol kemudian dicampurkan dengan Pertalite dalam komposisi E5 hingga E25, menurunkan titik nyala campuran dari 29,8°C (E5) ke 28,0°C (E25), meningkatkan densitas dari 0,7239 gr/cm3 (E5) ke 0,7250 gr/cm3 (E25) dan viskositas dari 0,41 cSt (E5) ke 0,49 cSt (E25), namun angka oktan (RON) cenderung stabil pada 91,4- 95,6. Tujuan penelitian adalah menghasilkan bioetanol sesuai SNI 7390:2012, mendapatkan parameter optimal pencampuran bioetanol-Pertalite, dan mencapai kualitas Gasohol standar RON Pertalite. Hasilnya, kadar bioetanol kurang mendekati SNI 99,5%, campuran bioetanol-Pertalite meningkatkan beberapa parameter namun menurunkan titik nyala, dan campuran E25 memenuhi standar RON 95,6 untuk Pertalite.
Pretreatment Delignifikasi Limbah Kulit Durian Sebagai Bahan Baku Pembuatan Bioetanol Putra, Rizkika; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Daur Lingkungan Vol 7, No 2 (2024): Agustus
Publisher : Universitas Batanghari Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33087/daurling.v7i2.306

Abstract

ABSTRAKKulit durian (60-75% bagian durian) mengandung selulosa 55,3%, lignin 19,3% dan abu 6,1%. Kandungan selulosa yang cukup tinggi dalam kulit durian merupakan potensi bioetanol. Tetapi, kandungan lignin dalam kulit durian mengganggu proses pembuatan bioetanol. Lignin bersifat cukup resisten terhadap degradasi kimia dan biologi, sehingga menghambat proses fermentasi. Diperlukan pretreatment proses delignifikasi untuk membantu proses fermentasi. Proses delignifikasi membutuhkan senyawa basa kuat dalam proses pemisahan lignin dari selulosa. Delignifikasi dalam penelitian ini dilakukan dengan aplikasi NaOH 2%, 3%, 4%, 5% dan 6% dan waktu 60, 90 dan 120 menit. Pretreatment delignifikasi diharapkan meningkatkan kadar selulosa dan menurunkan kadar lignin. Kondisi terbaik pretreatment delignifikasi yaitu larutan pemasak NaOH 6%w/v dengan waktu 120 menit yang menghasilkan 83,05%w/w selulosa dan 8,03%w/w  lignin. Larutan pemasak NaOH dengan konsentrasi yang tinggi dan waktu delignifikasi yang semakin lama menurunkan kadar lignin dan meningkatkan selulosa. Kata kunci : Delignifikasi, Lignin, Limbah Kulit Durian, NaOH, SelulosaABSTRACTDurian peel (60-75%) contains cellulose 55.3%, lignin 19.3%, and ash 6.1%. Due to its high cellulose content, durian peel can be utilized and processed into bioethanol. However, in the production of bioethanol using durian peel waste as a raw material, lignin interferes the bioethanol production process: lignin. Lignin chemically and biologically resistant to degradation restricting the fermentation process. Therefore, a pretreatment delignification process is required before fermentation. A strong alkaline compound is needed in the delignification process to separate lignin from cellulose. This study uses NaOH as a strong base in the delignification process. The variations used in this study are the concentration of NaOH (2%, 3%, 4%, 5%, and 6%) and time (60, 90, and 120 minutes). Delignification pretreatment affects the cellulose and lignin content produced, with the best delignification pretreatment condition being a 6%w/v NaOH cooking solution for 120 minutes, resulting in a cellulose content of 83.05%w/w and a lignin content of 8.03%w/w. Increase concentration of NaOH as the cooking solution and longer time of the delignification time, increase cellulose obtained and decrease lignin content Keywords :    Cellulose, Delignification, Lignin, NaOH, Waste peel of Durian
Plastik Biodegradable Dari Selulosa Tongkol Jagung Menggunakan Metode Solution Casting Mulyana, Eka; Purnamasari, Indah; Yerizam, Muhammad
Jurnal Daur Lingkungan Vol 7, No 2 (2024): Agustus
Publisher : Universitas Batanghari Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33087/daurling.v7i2.308

Abstract

ABSTRAKIndonesia membutuhkan plastik biodegradable untuk memitigasi limbah plastik terakumulasi di lingkungan. Plastik biodegradable mudah terurai, sehingga mengurangi dampak negatif terhadap lingkungan. Plastik biodegradable dibuat menggunakan metode solution casting dengan bahan-bahan yaitu NaOH, NaOCl, HCl, asam asetat, gliserol, dan aquadest. Selulosa yang diekstraksi dari tongkol jagung pada penelitian ini memiliki kadar 83,1466%, dan digunakan dalam pembuatan plastik biodegradable, untuk membuat variasi selulosa 0% dan 10% dan penambahan gliserol sebagai plasticizer dengan variasi 0, 1, 3, 5, dan 7 ml. Karakterisasi meliputi uji kekuatan tarik, elongasi, daya serap air, dan biodegradasi. Hasil karakterisasi menyatakan bahwa uji kekuatan tarik terbaik mencapai 403,392 MPa di sampel dengan 0% selulosa dan tanpa tambahan gliserol. Nilai elongasi terbesar yaitu 28%, terdapat pada sampel dengan 10% selulosa dan penambahan 7 ml gliserol. Plastik menunjukkan daya serap air terbaik dengan nilai 27,86% pada sampel dengan 0% selulosa dan tanpa tambahan gliserol. Selama waktu degradasi selama 5 hari, plastik biodegradable dari selulosa tongkol jagung mencapai tingkat degradasi tertinggi sebesar 31,9293% pada sampel dengan 0% selulosa dan tanpa tambahan gliserol.Kata kunci : Gliserol; Plastik biodegradable; Selulosa; Tongkol JagungABSTRACT Indonesia requires biodegradable plastic to mitigate accumulation plastic waster in the envirnment. Biodegradable plastic easily decompose to mitigate negatve impacts to the environment. Biodegradable plastics were produced using the solution casting method with materials namely NaOH, NaOCl, HCl, acetic acid, glycerol, and distilled water. Cellulose extracted at 83.1466% concentration was used in the production of these plastics to make variations of 0% and 10% cellulosa, and glycerol added as a plasticizer in variations of 0, 1, 3, 5, and 7 ml. Characterization included testing for tensile strength, elongation, water absorption, and biodegradation. The characterization results indicated that the highest tensile strength test reached 403.392 MPa in samples with 0% cellulose and no additional glycerol. The greatest elongation value, 28%, was found in samples with 10% cellulose and 7 ml glycerol added. The plastic exhibited the best water absorption capacity with a value of 27,86 % in samples with 0% cellulose and no additional glycerol. Over a degradation period of 5 days, biodegradable plastics made from corn cob cellulose achieved the highest degradation rate of 31.9293% in samples with 0% cellulose and no additional glycerol.Keywords : Biodegradable Plastic; Cellulose; Corn Cob; Glycerol 
Pembuatan Bioetanol Berbahan Baku Chlorella Pyrenoidosa Dengan Metode Hidrolisis Asam dan Fermentasi Jannah, Asyeni Miftahul; Yerizam, Muhammad; Pratama, Muhammad Yori; Amin, Achmad Reza Aditya
Journal of Chemical Process Engineering Vol. 8 No. 1 (2023): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v8i1.756

Abstract

Mikroalga, seperti C. pyrenoidosa dapat digunakan sebagai bahan baku untuk produksi bioetanol generasi ketiga. Pemanfaatan karbohidrat mikroalga, seperti C. pyrenoidosa untuk produksi bioetanol memiliki tiga tahap utama, yaitu pretreatment bahan baku, hidrolisis, dan fermentasi. Penelitian ini bertujuan untuk mengetahui pengaruh hidrolisis asam dan waktu fermentasi pada proses pembuatan bioetanol berbahan baku C. pyrenoidosa. C. pyrenoidosa dihidrolisis menggunakan asam sulfat dengan konsentrasi yang bervariasi (1, 2, 3, 4 dan 5) % pada suhu 80oC selama 75 menit. Produksi bioetanol dilakukan dengan fermentasi glukosa menggunakan Saccharomyces cerevisiae dengan variasi waktu 1, 2, 3, 4 dan 5 hari. Hasil penelitian menunjukkan bahwa konsentrasi glukosa yang didapatkan mengalami peningkatan seiring naiknya konsentrasi asam sulfat dengan konsentrasi glukosa tertinggi, yaitu 5,97 gr/L didapatkan setelah hidrolisis menggunakan larutan asam sulfat 5%. Kadar bioetanol tertinggi, yaitu 19,28% diperoleh dari 5 hari fermentasi sampel hidrolisis 5% asam sulfat.
Characterization of Rubber Bark (Hevea Brasiliensis) as s Raw Material and Fly Ash as a Catalyst for the Production of Biofuel Fenoldi, Nova; Muhammad Yerizam; Kalsum, Leila
International Journal of Research in Vocational Studies (IJRVOCAS) Vol. 4 No. 3 (2024): IJRVOCAS - December
Publisher : Yayasan Ghalih Pelopor Pendidikan (Ghalih Foundation)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/ijrvocas.v4i3.297

Abstract

The research conducted on the utilization of rubber wood bark biomass for biofuel production employs the pyrolysis process. Rubber wood bark, a by-product of rubber plantation waste, has the potential to be converted into energy. However, its utilization has not been optimal, often leading to accumulation issues due to its inability to be fully utilized. Therefore, this study aims to utilize rubber wood bark to produce biofuel. Fly ash catalyst is employed to expedite the biofuel production process. The testing methods used to analysis the characteristics of rubber wood bark include proximate analysis and calorific value analysis. Proximate analysis of rubber wood bark yielded the following values: moisture content of 6.39%, ash content of 4.61%, volatile matter of 71.41%, and fixed carbon of 17.59%. The calorific value of rubber wood bark was determined to be 4200.00 calories per gram. Meanwhile, the characteristics of coal fly ash used as a catalyst were analyzed using X-Ray Fluorescence (XRF) or X-ray diffraction. The analysis revealed the presence of silicon dioxide (SiO2) at 49.21%, aluminum oxide (Al2O3) at 16.22%, iron (III) oxide (Fe2O3) at 5.49%, calcium oxide (CaO) at 7.37%, magnesium oxide (MgO) at 1.72%, and potassium oxide (K2O) at 0.50%. The analysis of rubber wood bark and coal fly ash indicates that rubber wood bark can be used as a raw material for biofuel production, while coal fly ash can serve as a catalyst.
Conversion of Wasted Oil to Biodiesel Using CaO from Chicken Egg Sheets as a Catalist Jabborov, Behzod; Syarif, Aida; Yerizam, Muhammad
International Journal of Research in Vocational Studies (IJRVOCAS) Vol. 4 No. 3 (2024): IJRVOCAS - December
Publisher : Yayasan Ghalih Pelopor Pendidikan (Ghalih Foundation)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/ijrvocas.v4i3.311

Abstract

This research explores the use of used cooking oil as a primary feedstock in biodiesel production, with the addition of a calcium oxide (CaO) catalyst derived from eggshells. The process begins by filtering the used cooking oil to remove impurities, after which the oil undergoes tests to assess its density, viscosity, acid number, free fatty acid content, and water content. These initial steps are crucial to ensure the quality and readiness of the oil for further processing. Following this, the CaO catalyst is produced from eggshells through an impregnation process, a method that allows the transformation of eggshells into an effective catalyst. The study employs a heterogeneous catalyst system, where the CaO catalyst, characterized by its micro-sized particles, is used in the transesterification process. This approach is chosen as an alternative to the conventional use of homogeneous catalysts, providing potential advantages in terms of reusability and environmental impact. The production of biodiesel is conducted in two main stages: esterification and transesterification. In both stages, the CaO from eggshells is utilized as a catalyst, and the filtered used cooking oil serves as the raw material for biodiesel synthesis. The research identifies the optimal conditions for biodiesel production, which include heating the mixture to a temperature of 900°C, using a CaO catalyst amounting to 1% of the weight of the used cooking oil, and maintaining a reaction time of 60 minutes. Under these conditions, the study achieved a biodiesel yield of 62.17%. This research highlights the effectiveness of using waste materials such as eggshells and used cooking oil in producing biodiesel, offering a sustainable and environmentally friendly alternative to traditional methods.
Co-Authors Abu Hasan Abu Hasan Abu Hasan Achmad Reza Aditya Amin Agus Manggala Agustin Pratiwi, Ines AIDA SYARIF Aida Syarif Akbar Ismi Aziz Pramito Alfajri, Ahmad Rizki Aliyah Montessa Alsarah, Danil Son Amin, Achmad Reza Aditya Anerasari Meidinariasty Anerasari Meidinariasty Anerasari Meidinariasty Anggi Dwi Chandrika Apriansyah Zulatama Aprilia, Luraselly Arda Apriyansah Apriyansah, Apriyansah Ardiani, Salsha Aria Yopianita Arif Budiman Asyeni Miftahul Jannah Asyeni Miftahul Jannah Ayuni Lestari Azaria Hikmah Fajrianti Az’zahrah, Nandyta Rizqi Cindi Ramayanti Dina Eka Pranata Dwi Nugroho, Afrian Eka Mulyana, Eka Ekawati, Linda Ellina Margaretty Endang Sri Rahadianti Erwana Dewi Erwin Erwin Fatahul Arifin, Fatahul Febri Liani Br Simanjuntak Fenoldi, Nova Feri Hafidz, Abdurrahman Helen Chairunisa Ihtifazhuddin, Farhan INDAH PURNAMASARI Indah Purnamasari Indah Purnamasari Indrayani Indrayani Jabborov, Behzod Kalsum, Leila Khairunnisa, Annisa Septia Kusuma, Mutmainnah Ningtyas M, Anerasari M. Ridho Triadi M. Zaman Manggala, Agus Martha Aznury Martha Martha Mediniariasty, Anerasari Muhammad Yori Pratama Muhammad Zaman Mustain Zamhari Mustain Zamhari Nabila, Rizky Ayu Ningsih, Anis Wahyu Nurjanah, Rizki Nyayu Fia Atindu Nyayu Zubaidah Nyayu Zubaidah Pratama, Andrian Putra Pratama, Muhammad Yori Puspa, Dilia Putra, Rizkika Raysha Amelya Renny Citra Ramadhani Riansyah, Epan Robert Junaidi Robert Junaidi Rusdianasari Rusdianasari Rusdianasari Rusdianasari Rusdianasari Sabrina, Delanisa Saqila Putri Aulia Sari Rizky Amelia Sari, Rahmaida Sarmidi Sarmidi Selastia Yulianti Selastia Yuliati Silmi Tsabita Sirait, Agnes Tasya Pintauly Syafitri, Aulia Tamara, Ade Wan Qori Sri Maulani Wardhana, Agum Try Winnugroho Wiratman, Manfaluthy Hakim, Tiara Aninditha, Aru W. Sudoyo, Joedo Prihartono Yahya, Muhammad Habib Yohandri Bow Zain, Raina Khoirunisa Zamheri, Ahmad