Claim Missing Document
Check
Articles

Physical Properties Investigations of Natural Rubber Composites Using Cetyltrimethylammonium Bromide (CTAB) as Modifier of Local Clay Filler Hasan, Abu; Junaidi, Robert; Yerizam, Muhammad; Arifin, Fatahul
ASEAN Journal of Chemical Engineering Vol 23, No 3 (2023)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.80712

Abstract

Improved absorption of rubber backbone on filler surfaces is necessary to enhance the physical properties of rubber vulcanizate. One of the ways to repair the surface of the filler is through modifying using surfactant. Hence, this study aims to compare the physical properties of natural rubber vulcanizates using clay filler and modified clay with cetyltrimethylammonium bromide (CTAB). The processes that were followed to achieve the objectives of this research were the design of rubber formulas, mastication and milling of rubber, and testing of the physical properties of rubber vulcanization. The clay characterization and its modification using FTIR and XRD were also carried out. Characterization using FTIR and XRD showed that there was indeed a clay modification with CTAB. Natural rubber compounds were also analyzed using SEM. The torque on the rheometer for modified clay with CTAB is 12.34 kg-cm higher than for original clay, which is 7.05 kg-cm. Elongation at break and tensile strength for vulcanizate using CTAB-modified clay filler is lower than that using original clay, with 300% modulus and hardness increase. Thus, clay modification using CTAB as a filler has a good effect on the curing characteristics and physical properties of natural rubber vulcanization compared to only using local clay as a filler.
Pengolahan Pati Rumbia menjadi Serbuk Glukosa secara Hidrolisis Enzimatis dengan Variasi Perbandingan Pati dan Air, Suhu Evaporasi, dan Suhu Pengeringan Az’zahrah, Nandyta Rizqi; Dewi, Erwana; Yerizam, Muhammad
Jurnal Teknik Kimia USU Vol. 13 No. 1 (2024): Jurnal Teknik Kimia USU
Publisher : Talenta Publisher (Universitas Sumatera Utara)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jtk.v13i1.13327

Abstract

Glucose is a simple sugar that can be used as an sucrose alternative. Rumbia starch is rich in carbohydrates and abundant in Indonesia, potentially being used as a raw material for the production of glucose powder. The process involves starch hydrolysis, evaporation, and drying. The purpose of this study was to obtain optimal conditions of reducing sugar content, evaporation, and drying temperature based on variations in starch and water ratio (1:3, 1:4, 1:5, and 1:6), evaporation temperature (100 °C and 115 °C), and drying temperature (50 °C, and 70 °C). From this study, the optimal ratio of starch and water was 1:4 with a reduced sugar content of 99,77%. The optimal evaporation temperature was 115 °C, the brix content obtained is 85%, and the optimal drying temperature was 70°C, the water content obtained is 3,60%. Based on SNI of glucose, the glucose powder products meet the standard for water content and ash content. However, only in the ratio of starch and water 1:4 and 1:5, the reducing sugar content met the SNI of glucose.
Preparation of Bioethanol from Pineapple Peel Waste for Blending Pertalite into Alternative Fuel (Gasohol) Ihtifazhuddin, Farhan; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Sumberdaya Alam dan Lingkungan Vol 11, No 2 (2024)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jsal.2024.011.02.1

Abstract

This study aims to obtain bioethanol according to the Indonesian National Standard (SNI) 7390:2012, obtain Gasohol according to the RON (Research Octane Number) standard in Pertalite, and produce alternative fuels that are more environmentally friendly. The bioethanol production process includes hydrolysis, fermentation, distillation, and adsorption, with Saccharomyces cerevisiae to ferment sugar in pineapple skin into ethanol with a content of 59.62% from a 5-day fermentation process with 4% Saccharomyces cerevisiae, 0.5% urea, 0.5% NPK. Bioethanol is then mixed with Pertalite in the composition of E5 (5 ml of bioethanol mixed with 95 ml of Pertalite) to E25 (25 ml of bioethanol mixed with 75 ml of Pertalite), lowering the flash point of the mixture from 29.8°C (E5) to 28.0°C (E25), increasing the density from 0.7239 gr.(cm3)-1 (E5) to 0.7250 gr.(cm3)-1 (E25) and the viscosity from 0.41 cSt (E5) to 0.49 cSt (E25). Still, the octane number (RON) tends to be stable at 91.4-95.6. As a result, the bioethanol content is close to SNI 99.5%, the bioethanol-Pertalite mixture improves several parameters but lowers the flash point, and the E25 mixture meets the RON standard of 95.6 for Pertalite.
Pemanfaatan Limbah Kulit Nanas Menjadi Bioetanol dengan Variasi Konsentrasi Ragi dan Lama Fermentasi Febri Liani Br Simanjuntak; Muhammad Yerizam; Anerasari Meidinariasty
Jurnal Serambi Engineering Vol. 9 No. 4 (2024): Oktober 2024
Publisher : Faculty of Engineering, Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pineapple peel waste can pollute the environment if not properly managed. On the other hand, pineapple peel waste can be used as a raw material for the production of bioethanol. The aim of this study was to evaluate the effect of variations in yeast concentration and the duration of the fermentation process on the bioethanol content of pineapple peel waste. In the fermentation process with variations in yeast concentration of 1.5%, 2% and 4%, the type of yeast used is Saccharomyces cerevisiae, the addition of nutrients in the form of NPK and urea by 0.5% each, as well as variations in the length of fermentation for 4 days, 5 days, 6 days, 7 days and 8 days. This study showed that the bioethanol content obtained was significantly influenced by yeast concentration and fermentation time. The sample with the highest ethanol content was produced with the addition of 4% yeast and fermentation for 5 days, the bioethanol content produced was 59% based on calculations using the standard ethanol curve equation and 57.23% based on analysis using GC-MS.
Produksi Bioetanol Berbahan Ampas Tebu Dan Sabut Kelapa Dengan Proses Fermentasi - Distilasi Salsha Ardiani; Muhammad Yerizam; Selastia Yuliati
Jurnal Ilmiah Wahana Pendidikan Vol 10 No 7 (2024): Jurnal Ilmiah Wahana Pendidikan
Publisher : Peneliti.net

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.11221537

Abstract

The high demand for fuel in Indonesia is currently the main crisis for the lack of fuel oil (BBM). So that alternative energy plays an important role in overcoming bad situations like today, by utilizing waste from abundant natural resources through this research it can create bioethanol as an alternative energy made from bagasse and coconut coir. In the process of making bioethanol using fermentation and distillation methods through various processes such as lignification and hydrolysis to increase the glucose content so that the two materials can be fermented and produce good bioethanol. Sugarcane bagasse and coconut coir are fermented using yeast with urea substituted as yeast nutrition in the bioethanol fermentation process, where urea is used with variations of 1gr, 1.5gr, 2gr, 2.5gr, and 3gr. After the urea variation samples were analyzed from this study for the bioethanol content, the sample which had the highest bioethanol content based on the urea variation produced a bioethanol content of 25.1% with 2gr yeast and 3g urea, the optimal fermentation time was 5 days, with a refractive index obtained 1, 3522
Penurunan Kadar Ammonia dari Air Limbah Industri Menggunakan Jet Bubble Column dengan Solvent KOH Wan Qori Sri Maulani; Muhammad Zaman; Muhammad Yerizam
JOURNAL OF INDUSTRIAL AND MANUFACTURE ENGINEERING Vol. 8 No. 2 (2024): EDISI NOVEMBER
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jime.v8i2.12490

Abstract

Ammonia merupakan salah satu senyawa yang dihasilkan dari proses industri pembuatan pupuk urea yang bersifat toksik dan berbahaya. Ammonia yang terkandung dalam air limbah dapat berdampak besar terhadap lingkungan dan sekitarnya jika langsung dibuang tanpa pengolahan yang baik terlebih dahulu. Oleh karena itu, diperlukan adanya teknik pengolahan limbah yang menjadi bagian penting untuk menjaga kelestarian lingkungan. Jet Bubble Column merupakan salah satu metode yang dapat diterapkan untuk penurunan kadar ammonia. Tujuan dari penelitian ini adalah untuk menghitung koefisien perpindahan massa dan efisiensi untuk mengurangi kadar ammonia dalam air limbah industri melalui penggunaan udara stripping. Pada penelitian ini akan dilihat pengaruh dari variabel yang akan divariasikan, seperti laju alir udara (6-20 L/menit) dan temperatur (35°C dan 50°C). Kadar ammonia akan dianalisis menggunakan alat spektrofotometer UV-Vis dengan reagen Nessler dan panjang gelombang 460 nm. Hasil penelitian memperlihatkan bahwa peningkatan laju alir udara, temperatur, dan waktu stripping memiliki pengaruh signifikan terhadap nilai koefisien perpindahan massa dan efisiensi penurunan ammonia. Nilai koefisien perpindahan massa (KLa) terbaik diperoleh pada kondisi Qg = 20 L/menit dan T = 50°C yaitu sebesar 0,936 jam-1 dengan efisiensi sebesar 64,58%.
Pembuatan Bioetanol dari Limbah Kulit Nanas untuk Pencampuran Pertalite menjadi Bahan Bakar Alternatif (Gasohol) Ihtifazhuddin, Farhan; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Energi Baru dan Terbarukan Vol 5, No 3 (2024): Oktober 2024
Publisher : Program Studi Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jebt.2024.24136

Abstract

Penelitian ini bertujuan memanfaatkan limbah kulit nanas untuk pembuatan bioetanol dan campurannya dengan bahan bakar Pertalite, menghasilkan bahan bakar alternatif yang lebih ramah lingkungan. Proses produksi bioetanol meliputi hidrolisis, fermentasi, distilasi, dan adsorpsi, dengan ragi Saccharomyces cerevisiae untuk memfermentasi gula dalam kulit nanas menjadi etanol dengan kadar 59,62% dari proses fermentasi 5 hari dengan 4% ragi, 0,5% urea, 0,5% NPK. Bioetanol kemudian dicampurkan dengan Pertalite dalam komposisi E5 hingga E25, menurunkan titik nyala campuran dari 29,8°C (E5) ke 28,0°C (E25), meningkatkan densitas dari 0,7239 gr/cm3 (E5) ke 0,7250 gr/cm3 (E25) dan viskositas dari 0,41 cSt (E5) ke 0,49 cSt (E25), namun angka oktan (RON) cenderung stabil pada 91,4- 95,6. Tujuan penelitian adalah menghasilkan bioetanol sesuai SNI 7390:2012, mendapatkan parameter optimal pencampuran bioetanol-Pertalite, dan mencapai kualitas Gasohol standar RON Pertalite. Hasilnya, kadar bioetanol kurang mendekati SNI 99,5%, campuran bioetanol-Pertalite meningkatkan beberapa parameter namun menurunkan titik nyala, dan campuran E25 memenuhi standar RON 95,6 untuk Pertalite.
Pretreatment Delignifikasi Limbah Kulit Durian Sebagai Bahan Baku Pembuatan Bioetanol Putra, Rizkika; Yerizam, Muhammad; Yuliati, Selastia
Jurnal Daur Lingkungan Vol 7, No 2 (2024): Agustus
Publisher : Universitas Batanghari Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33087/daurling.v7i2.306

Abstract

ABSTRAKKulit durian (60-75% bagian durian) mengandung selulosa 55,3%, lignin 19,3% dan abu 6,1%. Kandungan selulosa yang cukup tinggi dalam kulit durian merupakan potensi bioetanol. Tetapi, kandungan lignin dalam kulit durian mengganggu proses pembuatan bioetanol. Lignin bersifat cukup resisten terhadap degradasi kimia dan biologi, sehingga menghambat proses fermentasi. Diperlukan pretreatment proses delignifikasi untuk membantu proses fermentasi. Proses delignifikasi membutuhkan senyawa basa kuat dalam proses pemisahan lignin dari selulosa. Delignifikasi dalam penelitian ini dilakukan dengan aplikasi NaOH 2%, 3%, 4%, 5% dan 6% dan waktu 60, 90 dan 120 menit. Pretreatment delignifikasi diharapkan meningkatkan kadar selulosa dan menurunkan kadar lignin. Kondisi terbaik pretreatment delignifikasi yaitu larutan pemasak NaOH 6%w/v dengan waktu 120 menit yang menghasilkan 83,05%w/w selulosa dan 8,03%w/w  lignin. Larutan pemasak NaOH dengan konsentrasi yang tinggi dan waktu delignifikasi yang semakin lama menurunkan kadar lignin dan meningkatkan selulosa. Kata kunci : Delignifikasi, Lignin, Limbah Kulit Durian, NaOH, SelulosaABSTRACTDurian peel (60-75%) contains cellulose 55.3%, lignin 19.3%, and ash 6.1%. Due to its high cellulose content, durian peel can be utilized and processed into bioethanol. However, in the production of bioethanol using durian peel waste as a raw material, lignin interferes the bioethanol production process: lignin. Lignin chemically and biologically resistant to degradation restricting the fermentation process. Therefore, a pretreatment delignification process is required before fermentation. A strong alkaline compound is needed in the delignification process to separate lignin from cellulose. This study uses NaOH as a strong base in the delignification process. The variations used in this study are the concentration of NaOH (2%, 3%, 4%, 5%, and 6%) and time (60, 90, and 120 minutes). Delignification pretreatment affects the cellulose and lignin content produced, with the best delignification pretreatment condition being a 6%w/v NaOH cooking solution for 120 minutes, resulting in a cellulose content of 83.05%w/w and a lignin content of 8.03%w/w. Increase concentration of NaOH as the cooking solution and longer time of the delignification time, increase cellulose obtained and decrease lignin content Keywords :    Cellulose, Delignification, Lignin, NaOH, Waste peel of Durian
Plastik Biodegradable Dari Selulosa Tongkol Jagung Menggunakan Metode Solution Casting Mulyana, Eka; Purnamasari, Indah; Yerizam, Muhammad
Jurnal Daur Lingkungan Vol 7, No 2 (2024): Agustus
Publisher : Universitas Batanghari Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33087/daurling.v7i2.308

Abstract

ABSTRAKIndonesia membutuhkan plastik biodegradable untuk memitigasi limbah plastik terakumulasi di lingkungan. Plastik biodegradable mudah terurai, sehingga mengurangi dampak negatif terhadap lingkungan. Plastik biodegradable dibuat menggunakan metode solution casting dengan bahan-bahan yaitu NaOH, NaOCl, HCl, asam asetat, gliserol, dan aquadest. Selulosa yang diekstraksi dari tongkol jagung pada penelitian ini memiliki kadar 83,1466%, dan digunakan dalam pembuatan plastik biodegradable, untuk membuat variasi selulosa 0% dan 10% dan penambahan gliserol sebagai plasticizer dengan variasi 0, 1, 3, 5, dan 7 ml. Karakterisasi meliputi uji kekuatan tarik, elongasi, daya serap air, dan biodegradasi. Hasil karakterisasi menyatakan bahwa uji kekuatan tarik terbaik mencapai 403,392 MPa di sampel dengan 0% selulosa dan tanpa tambahan gliserol. Nilai elongasi terbesar yaitu 28%, terdapat pada sampel dengan 10% selulosa dan penambahan 7 ml gliserol. Plastik menunjukkan daya serap air terbaik dengan nilai 27,86% pada sampel dengan 0% selulosa dan tanpa tambahan gliserol. Selama waktu degradasi selama 5 hari, plastik biodegradable dari selulosa tongkol jagung mencapai tingkat degradasi tertinggi sebesar 31,9293% pada sampel dengan 0% selulosa dan tanpa tambahan gliserol.Kata kunci : Gliserol; Plastik biodegradable; Selulosa; Tongkol JagungABSTRACT Indonesia requires biodegradable plastic to mitigate accumulation plastic waster in the envirnment. Biodegradable plastic easily decompose to mitigate negatve impacts to the environment. Biodegradable plastics were produced using the solution casting method with materials namely NaOH, NaOCl, HCl, acetic acid, glycerol, and distilled water. Cellulose extracted at 83.1466% concentration was used in the production of these plastics to make variations of 0% and 10% cellulosa, and glycerol added as a plasticizer in variations of 0, 1, 3, 5, and 7 ml. Characterization included testing for tensile strength, elongation, water absorption, and biodegradation. The characterization results indicated that the highest tensile strength test reached 403.392 MPa in samples with 0% cellulose and no additional glycerol. The greatest elongation value, 28%, was found in samples with 10% cellulose and 7 ml glycerol added. The plastic exhibited the best water absorption capacity with a value of 27,86 % in samples with 0% cellulose and no additional glycerol. Over a degradation period of 5 days, biodegradable plastics made from corn cob cellulose achieved the highest degradation rate of 31.9293% in samples with 0% cellulose and no additional glycerol.Keywords : Biodegradable Plastic; Cellulose; Corn Cob; Glycerol 
Pembuatan Bioetanol Berbahan Baku Chlorella Pyrenoidosa Dengan Metode Hidrolisis Asam dan Fermentasi Jannah, Asyeni Miftahul; Yerizam, Muhammad; Pratama, Muhammad Yori; Amin, Achmad Reza Aditya
Journal of Chemical Process Engineering Vol. 8 No. 1 (2023): Journal of Chemical Process Engineering
Publisher : Fakultas Teknologi Industri - Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33536/jcpe.v8i1.756

Abstract

Mikroalga, seperti C. pyrenoidosa dapat digunakan sebagai bahan baku untuk produksi bioetanol generasi ketiga. Pemanfaatan karbohidrat mikroalga, seperti C. pyrenoidosa untuk produksi bioetanol memiliki tiga tahap utama, yaitu pretreatment bahan baku, hidrolisis, dan fermentasi. Penelitian ini bertujuan untuk mengetahui pengaruh hidrolisis asam dan waktu fermentasi pada proses pembuatan bioetanol berbahan baku C. pyrenoidosa. C. pyrenoidosa dihidrolisis menggunakan asam sulfat dengan konsentrasi yang bervariasi (1, 2, 3, 4 dan 5) % pada suhu 80oC selama 75 menit. Produksi bioetanol dilakukan dengan fermentasi glukosa menggunakan Saccharomyces cerevisiae dengan variasi waktu 1, 2, 3, 4 dan 5 hari. Hasil penelitian menunjukkan bahwa konsentrasi glukosa yang didapatkan mengalami peningkatan seiring naiknya konsentrasi asam sulfat dengan konsentrasi glukosa tertinggi, yaitu 5,97 gr/L didapatkan setelah hidrolisis menggunakan larutan asam sulfat 5%. Kadar bioetanol tertinggi, yaitu 19,28% diperoleh dari 5 hari fermentasi sampel hidrolisis 5% asam sulfat.
Co-Authors Abu Hasan Abu Hasan Abu Hasan Achmad Reza Aditya Amin Agum Try Wardhana Agus Manggala Agustin Pratiwi, Ines Ahmad Zamheri Aida Syarif AIDA SYARIF Akbar Ismi Aziz Pramito Aliyah Montessa Amin, Achmad Reza Aditya Anerasari Meidinariasty Anerasari Meidinariasty Anggi Dwi Chandrika Apriansyah Zulatama Aprilia, Luraselly Arda Aria Yopianita Arif Budiman Asyeni Miftahul Jannah Asyeni Miftahul Jannah Ayuni Lestari Azaria Hikmah Fajrianti Az’zahrah, Nandyta Rizqi Cindi Ramayanti Dilia Puspa Dina Eka Pranata Dwi Nugroho, Afrian Eka Mulyana, Eka Ellina Margaretty Endang Sri Rahadianti Erwana Dewi Erwin Erwin Fatahul Arifin, Fatahul Febri Liani Br Simanjuntak Fenoldi, Nova Feri Hafidz, Abdurrahman Helen Chairunisa Ihtifazhuddin, Farhan Indah Purnamasari INDAH PURNAMASARI Indah Purnamasari Indrayani Indrayani Jabborov, Behzod Kalsum, Leila Khairunnisa, Annisa Septia Kusuma, Mutmainnah Ningtyas M, Anerasari M. Ridho Triadi M. Zaman Manggala, Agus Martha Aznury Martha Martha Muhammad Yori Pratama Muhammad Zaman Mustain Zamhari Nabila, Rizky Ayu Ningsih, Anis Wahyu Nyayu Fia Atindu Nyayu Zubaidah Nyayu Zubaidah Pratama, Andrian Putra Pratama, Muhammad Yori Putra, Rizkika Raysha Amelya Renny Citra Ramadhani Riansyah, Epan Robert Junaidi Robert Junaidi Rusdianasari Rusdianasari Rusdianasari Sabrina, Delanisa Salsha Ardiani Saqila Putri Aulia Sari Rizky Amelia Sarmidi Sarmidi Selastia Yulianti Selastia Yuliati Selastia Yuliati Silmi Tsabita Sirait, Agnes Tasya Pintauly Tamara, Ade Wan Qori Sri Maulani Winnugroho Wiratman, Manfaluthy Hakim, Tiara Aninditha, Aru W. Sudoyo, Joedo Prihartono Yahya, Muhammad Habib Yohandri Bow Zain, Raina Khoirunisa